e ——— -

PYTHON — BASIC COURSE

ux, Windows, and MacOS. Its versatility and ease of use make it an excellent choice for data-related work. ‘

* Pythonis efficient and helps you build projects faster.

"+ Benefits of Python:
* 1. Reduces Development Time

* 2. 0bject-Oriented Language

* |t supports object-oriented programming, simplifying complex applications.
* 3. No Compilation Required

* Python runs without manual compilation, saving time.

* 4. Dynamic Data Typing

* |t adapts to different data types during runtime.

* 5.Shorter Code

* Python allows you to achieve more with fewer lines of code.

* 6.Easytolearn

* Python’s simplicity makes it beginner-friendly and developer-friendly.
* 7.Readable Code

* Python code is clean and easy to understand, even for teams.

* 8. Supports Collaboration

* |deal for team projects due to its simplicity and readability.

* 9. Extendable

* You can easily integrate Python with other programming languages.

* 10. Automatic Memory Management

* Python handles memory allocation and deallocation automatically.

* 11. Free and Open Source

* Python is completely free to use and modify.

Types of Python

Python Data Types Structure

NoneType

—Python Data Types

N €

Sequence

N

frozenset dick

Mapping

Python Data Types

2 Y
Bookean NemeType

sh het he Jange q fonenset dit bl None
g, Helo g (1,2,8] g 1,23 egoangs eg, o0, bocemsetl] 2811 g, (ke vale} eg, Tooe Fake eg. Neme

——
R —

Main Type

Subtype Description Example
Numeric int Integer numbers 42
Numeric float Floating-point numbers 3.14
Numeric complex Complex numbers 1+2]
Sequence str Textual data "Hello, Worla!
Sequence list Mutable ordered collection |[1, 2, 3]
Sequence tuple Immutable ordered collectio|(1, 2, 3)
Sequence range Immutable sequence of numrange(0, 5)
Set set Unordered collection of unig({1, 2, 3}
Set frozenset Immutable unordered collec|frozenset([1, 2, 3])
Mapping dict Key-value pair collection |{'key": 'value'}
Boolean bool True/False values True, False
NoneType None Represents the absence of a|None

Strlngsw A Das qUEnCe oL chakaeiers or basically a text. Strings are groups of IetterN

guotation marks, single or double. Strings are amongst the most
popular types In Python There are a number of methods or built-in string functions

Defining Strings :

»name="Python"
» print(name)

Accessing strings :

» print(name[0])
» print(name[0:3])
» print(hame[3:6])

» print(hame[3:4])

——

me=

7

>na ython” len(name)
»name.upper()

»name.lower()

»name.title() - -> Converts first letter of each word into capital
»Name.count() - count number of times repletion of each word
»Name.index() - Starting index of given word’s index starting from zero
»Name.replace('is’, ‘was’) = replace word with new word

»Name.split() = split given string

»Name.join() = join given words

name =

7,89 10| 11 |12/13 | 14
INDEXING
9 18B|-7|6| -5 | -4 |-3|-2]-1

F-Strings provide a way to embed expressions inside string literals, using a minimal syntax. It
should be noted that an f-string is really an expression evaluated at run time, not a constant
value. In Python source code, an f-string is a literal string, prefixed with 'f', which contains
expressions inside braces. The expressions are replaced with their values.

Name = ‘Python’

Salary = 100000.7 4

f_string =1 ‘my name is ‘' :{name} and my age is :{age}’
Print(f_string)

e iomTal() funciion T—

>étvf.f0rmaf‘()‘ is one of the string formatting methods in Python3, which allows multiple
substitutions and value formatting. This method lets us concatenate elements within a string
through positional formatting.

»>* Syntax__ : {} .format(value)

» Parameters . (value) : Can be an integer, floating point numeric constant, string, characters
or even variables .Returntype : Returns a formatted string with the value passed as parameter
In the placeholder position. The placeholders can be identified using named indexes {price},
numbered indexes {0}, or even empty placeholders {}

name='Reshwanth’
2 age=25
3 sal=2000
commission=200
5 total_salary= sal+commission
6 print('My Name is : {} And My Age is : {} , my total salary is : {}'.format(name,age,total_salary))

My Name is : Reshwanth And My Age is : 25 , my total salary is :

- I B\

Python u'ses‘C‘-‘style stringformatting to create new, formatted strings. The "%" operator is used
to format a set of variables enclosed in a "tuple" (a fixed size list), together with a format string,
which contains normal text together with "argument specifiers", special symbols like "%s" and
ll%dll-

»S — strings

»d — decimal integers (base-10)

»f — floating point display

»C — character

»b — binary

» 0 — octal

» X — hexadecimal with lowercase letters after 9
» X — hexadecimal with uppercase letters after 9
»e — exponent notation

=55

D (O AN — ‘

e probably the most simple data type in Python. They can only have
» one of two values, namely True or False. It's a binary data type. We will use it a
 lot when we get to conditions and loops. The keyword here is bool.

usTr gy

~« Python knows a number of compound data types, used to group together other values. The
most versatile is the list, which can be written as a list of comma-separated values (items)
between square brackets []. Lists might contain items of different types, but usually the items

all have the same type.
> List is a collection which is ordered and changeable. Allows duplicate members.

> In Python lists are written with square brackets.

> Note: Python Lists replace Arrays (from most programming languages)

 numbers =[10, 22, 6, 1, 29]

In Python, we define lists by using square brackets. We put the elements in between of those
and separate them by commas. The elements of a list can have any data type and we can
also mix them.

 numbers =[10, 22, 6, 1, 29]

* names = ["John", "Alex", "Bob"]

* mixed = ["Anna", 20, 28.12, True]

» print(names|0])
In a list, we can also modify the values. For this, we index the elements in the same way.
»numbers|[1l] = 10

»names|[2] = "Jack”

Other method of list are as below

»len(variable_name)

»Sum()

»Max()

»Index()

» Count()

» Reverse()

» Sort(), sort(reverse=True)

» Append(), insert(), remove(), pop(), copy(),del(),extend()

-

1 mylist = ["Jan", "Feb", "Mar","Apr"] 1 lenlist = [1,2,3,4,5,6,7,8,9,10]
2 print('before adding new value :',mylist) 2 len(lenlist)
3 mylist.append("May")
4 print('After adding new value : ',mylist)
Qut[21]: 10
before adding new value : ['Jan', 'Feb', 'Mar', 'Apr']

After adding new value : ['Jan', 'Feb', 'Mar', 'Apr', 'May'] 1 unsortlist = ['a','d",'e','c','f','h",'g",'b"]
"2 unsortlist.sort(reverse=True)

1 mylist = ["Jan", "Mar™, "Apr"] '
- : : : : . - 3 unsortlist
print('Before inserting :',mylist)
3 mylist.insert(l, "Feb"™)
4 rint('After inserting : ',mylist
p (g 2 y) Dut[zz]: [Ih1, Tgl’ lfI, IE'I', ld', I'Clzr 'Ibf, Ia'l]
b._
Before inserting : ['Jan', 'Mar', "Apr'] 1 mylist = ["jan", "feb"™, "mar","apr"]
After ‘insert‘ing . [l:laﬂljl 'FEb‘, 'Mar', !Aprl:l 2 removed_var=mylist.pop(1l)
4 3 print(mylist)
. 4 print(removed_wvar)
1 mylist = ["Jan", "Feb", "Mar","Apr"]
2 monthlist = ["May","June","Jul"] [*jan', 'mar', ‘apr']
3 mylist.extend(monthlist) -
1 1 mylist = ["jan", "fTeb", "mar"]
4 my 1st 2 my List.clear ()
3 print{mylist)

OQut[16]: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'Jul'] 03

L

~Atuple is a collection which is ordered and unchangeable. In Python tuples are written with
round brackets ().

» Python tuple is much like a list except that it is immutable or unchangeable once created.

» Tuples use parentheses and creating them is as easy as putting different items separated by
a comma between parentheses.

Slicing :

»If you omit the first index, the slice starts at the beginning. If you omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of the whole list.

Tuple Values :

* Once a tuple is created, you cannot change its values. Tuples are unchangeable, or
Immutable as it also is called. But there is a workaround. You can convert the tuple into a list,
change the list, and convert the list back into a tuple

1 » = ("apple", "banana", "cherry")

2 » = List(x) # Conwverting TUPLE iNnto LIST

3 »[2] = "kKiwi" H# Updating a value based index in LIST
4 ®» = tuple(x) # Converting back to UPLI From LIST

5 PraAant(x)

5 print{'X type 1s : !',type(x))

('apple', 'banana', 'kiwi')

X type 1s @ <class "tuple':>

1 thistuple = ("apple", "banana", "cherry")
2 del thistuple
3 print(thistuple) #this will raise an error NameError: name 'thistuple' 1s not defined

HNameError: name 'thistuple' 1is not defined

onaries R

A dictionary is like a list, but more general. In a list, the index positions have to be integers; in
a dictionary, the indices can be (almost) any type. The function dict creates a new dictionary
with no items. Because dict is the name of a built-in function, you should avoid using it as a
variable name. A dictionary is a collection which is unordered, changeable and indexed. In
Python dictionaries are written with curly brackets, and they have keys and values.

» dct = {"Name": "John",
"Age": 25,
"Height": 6.1}

> print(dct["Name'])
> print(dct["Age"])
> print(dct["Height"])

»numberl = input("Enter first number: ")

»number2 = input("Enter second number: ")
»sum = numberl + number2
»print("Result: ", sum)

»numberl = input("Enter first number: ")
»number2 = input("Enter second number: ")
»numberl = int(humberl)

»number2 = int(humber2)

»sum = numberl + number2
»print("Result: ", sum)

S —— o~

PRINT()

« Description:
 Displays output to the console

« Example:
 print('Hello, World!')

INPUT()

« Description:
« Takes user input

« Example:
« name = input('Enter your name: ')

S —— o~

=

Description:

Returns the length of an object

Example:
len([1, 2, 3]) # Output: 3

TYPE()

Description:

Returns the type of an object

Example:
type(42) # Output: <class 'int'>

Description:
Converts a value to an integer

Example:
int('42') # Output: 42

N

S —— o~

FLOAT()

« Description:
« Converts a value to a float

« Example:
« float('3.14') # Output: 3.14

Description:
Converts a value to a string

Example:
str(42) # Output: '42'

STR()

Description:
Generates a sequence of numbers

Example:
list(range(5)) # Output: [0, 1, 2, 3, 4]

RANGE()

e ——— e

LIST()

« Description:
 Creates a list

« Example:
« list('abc') # Output: ['a’, 'b, 'c]

S —— o~

DICT()

Description:
Creates a dictionary

Example:
dict(key='value') # Output: {'key': 'value'}

Description:
Creates a set

Example:
set([1, 2, 2, 3]) # Output: {1, 2, 3}

SET()

S —— o~

HELP ()

Description:

Displays the documentation of a function

Example:
help(len)

SORTED()

« Description:
 Returns a sorted list

« Example:
« sorted([3, 1, 2]) # Output: [1, 2, 3]

S —— o~

SUM()

Description:
Returns the sum of elements

Example:
sum([1, 2, 3]) # Output: 6

S ——— o~

MAX()

Description:
Returns the maximum element

Example:
max([1, 2, 3]) # Output: 3

MIN()

Description:
Refturns the minimum element

Example:
min([1, 2, 3]) # Output: 1

ABS()

Description:

Returns the absolute value

Example:
abs(-5) # Output: 5

——— S

OPEN()

« Description:
« Opens afile

« Example:
« open('file.txt’, ')

« Description:
« Adds an item to a list

« Example:
o Ist =11, 2]; Ist.append(3) # Output: [1, 2, 3]

APPEN

POP()

Description:
Removes and returns an item from a list

Example:
Ist = [1, 2, 3]; Ist.pop() # Output:3

DEEINING-HUNCTI

DN IS a reusable block of code designed to perform a specific computation or task. It consists of a name,
a set of parameters (optional), and a sequence of statements that define its behavior. Here’s a breakdown of key

points:

Defining a Function:
» Functions are defined using the def keyword.
» The syntax includes the function name followed by a parenthesized list of parameters (if any).
» The body of the function begins on the next line and must be indented.

Key Characteristics of Functions:
» A function is executed only when explicitly called.
> e |t can accept inputs, called parameters, to customize its behavior.
» ¢ A function can return a result to the caller using the return statement.

Function definition
def greet(name):
"""This function greets the person with the provided name.

print(f"Hello, {name}!")

Calling the function
greet("Alice") # Output: Hello, Alice!

prinCH

If we want to make our functions more dynamic, we can define parameters. These parameters
can then be processed in the function code.

»def print._sum(numberl, number2):
» print(hnumberl + number2)
RETURN Statement

» def add(numberl, number2):
 return numberl + number2

Here we return the sum of the two parameters instead of printing it. But we can then use this
result in our code.

 number3 = add(10, 20)
 print(add(10, 20))

g versatile and powerful when they accept arguments. Arguments allow you to pass information into

a functlon enabllng it to work with different data during each call.

Types of Function Arguments:

1. Positional Arguments:

» Passed to the function in the order they appear.

» The function processes these arguments based on their position.

e 2. Keyword Arguments:

» Passed using a key-value pair format (key=value).

» The order does not matter as the arguments are identified by their names.

Key-Points:

>

>
>
>

Passing Arguments: Functions accept arguments to process new values and perform specific tasks.
Positional vs Keyword:
Positional Arguments: Depend on the order in which they are provided during the function call.

Keyword Arguments: Explicitly associate values with parameter names, improving readability and reducing the chance of errors.

Function with positional and keyword arguments
def calculate_area(length, width=5):

""'Calculate area of arectangle.™"
return length * width

Using positional arguments
print(calculate_area(10, 20)) # Output: 200

Using a mix of positional and keyword arguments
print(calculate_area(length=10, width=15)) # Output: 150

Using a single positional argument with default keyword value
print(calculate_area(10)) # Output: 50

— tionsin Pytﬁon \.

fined using the lambda keyword. It can take any

A lambda function is a small, anonymous function de

number of arguments but is restricted to a single expression. The result of the expression is

keyword ﬂ
f = |3

automatically returned.

lambda arguments: expression

Characteristics:
1. Anonymous: Lambda functions do not require a name.
2. Single Expression: The function body can only have one line.
3. Short and Concise: Useful for simple operations.
Examples :
1# Define a lambda function to add two numbers
add =lambda x,y: x+vy
print(add(5, 10))
Output: 15
2# Lambda function to calculate the square of a number
square = lambda x: x ** 2
print(square(4))
Output: 16

aali \ [l,\‘ "
| 1 e
AANAT A"

function object that accepts
and stores the result of the
expression

ﬁ argumen

3
WAl

t

one-line expression

o O]
even_numbers = list(filfer(lambda x: x % 2 == 0, numbers))
print(even_numbers) # Output: [2, 4, 6]

Double each number in a list using map
numbers = [1, 2, 3, 4]

doubled = list(map(laombda x: x * 2, numbers))
printf(doubled) # Output: [2, 4, 6, 8]

Sort a list of fuples by the second element

pairs = [(1, 'one'), (2, 'two'), (3, 'three')]

sorted_pairs = sorted(pairs, key=lambda x: x[1])
print(sorted_pairs) # Output: [(1, 'one’), (3, 'three'), (2, 'two')]

— it gFilem

open() returns a file object, and is most commonly used with two arguments:
open(filename, mode).

The key function for working with files in Python is the open() function.

The open() function takes two parameters; filename, and mode.

There are four different methods (modes) for opening a file

> "r" - Read - Default value. Opens a file for reading, error if the file does not exist

> "a" - Append - Opens a file for appending, creates the file if it does not exist

> "w" - Write - Opens a file for writing, creates the file if it does not exist

> "X" - Create - Creates the specified file, returns an error if the file exists

at the end of the string, and is only
2. This makes the return value unambiguous; if f.readline() returns a

been reached, while a blank line is represented by '\n", a string containing only a single

s

Create a sample text file

with open("sample.txt", "w") as file:
file.write("Hello, World!\n")
file.write("\n") # Blank line
file.write("Welcome to Python.\n")

Reading the file line by line using f.readline()
with open("sample.txt", "r") as file:
while True:
line = file.readline()
Check if end of file is reached
if line ==
print("End of file reached.")
break
elif line =="\n". # Check for blank line
print("This is a blank line.")
else:
print(f"Read line: {line.strip()}")

returns a file object, and is most commonly used with two arguments:
“open(filename, mode) .

Write to an Existing File
» Common Modes:

» ¢ “r” (Read): Default mode; opens the file for reading.
> ¢ “w” (Write): Opens the file for writing. Overwrites existing content or creates a new file if it doesn’t exist.

> ¢ “@” (Append): Opens the file for appending new content to the end without modifying existing content.

1# Writing new content to a file (overwriting if it exists)

with open("example_write.ixt", "w") as file:

file.write("This is the first line of the file.\n")

file.write("This will overwrite any existing content.\n")
print("File written using 'w' mode.")

le write 1xt", "a") as file:
file.write("This line is added to the existing content.\n")
file.write ("Appending doesn't overwrite the file.\n")
print("File updated using 'a' mode.")

	Slide 1: Python – Basic Course
	Slide 2: WHY Python for Data Science
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: print()
	Slide 20: input()
	Slide 21: len()
	Slide 22: type()
	Slide 23: int()
	Slide 24: float()
	Slide 25: str()
	Slide 26: range()
	Slide 27: list()
	Slide 28: dict()
	Slide 29: set()
	Slide 30: help()
	Slide 31: sorted()
	Slide 32: sum()
	Slide 33: max()
	Slide 34: min()
	Slide 35: abs()
	Slide 36: open()
	Slide 37: append()
	Slide 38: pop()
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

