
PYTHON – BASIC COURSE

WHY PYTHON FOR DATA SCIENCE
• Python has been a cross-platform, open-source language for over 20 years. You can code seamlessly on Linux, Windows, and MacOS. Its versatility and ease of use make it an excellent choice for data-related work.

• Benefits of Python:

• 1. Reduces Development Time

• Python is efficient and helps you build projects faster.

• 2. Object-Oriented Language

• It supports object-oriented programming, simplifying complex applications.

• 3. No Compilation Required

• Python runs without manual compilation, saving time.

• 4. Dynamic Data Typing

• It adapts to different data types during runtime.

• 5. Shorter Code

• Python allows you to achieve more with fewer lines of code.

• 6. Easy to Learn

• Python’s simplicity makes it beginner-friendly and developer-friendly.

• 7. Readable Code

• Python code is clean and easy to understand, even for teams.

• 8. Supports Collaboration

• Ideal for team projects due to its simplicity and readability.

• 9. Extendable

• You can easily integrate Python with other programming languages.

• 10. Automatic Memory Management

• Python handles memory allocation and deallocation automatically.

• 11. Free and Open Source

• Python is completely free to use and modify.

Data Types of Python

Strings : A basic sequence of characters or basically a text. Strings are groups of letters and/or
characters delimited with quotation marks, single or double. Strings are amongst the most
popular types in Python. There are a number of methods or built-in string functions

Defining Strings :

➢name=”Python"

➢print(name)

Accessing strings :

➢print(name[0])

➢print(name[0:3])

➢print(name[3:6])

➢print(name[3:4])

String Operations :

➢name=”Python” len(name)

➢name.upper()

➢name.lower()

➢name.title() - -> Converts first letter of each word into capital

➢Name.count() → count number of times repletion of each word

➢Name.index() → Starting index of given word’s index starting from zero

➢Name.replace(‘is’, ‘was’) → replace word with new word

➢Name.split() → split given string

➢Name.join() → join given words

F-strings

F-Strings provide a way to embed expressions inside string literals, using a minimal syntax. It
should be noted that an f-string is really an expression evaluated at run time, not a constant
value. In Python source code, an f-string is a literal string, prefixed with 'f', which contains
expressions inside braces. The expressions are replaced with their values.

Name = ‘Python’

Salary = 100000.74

f_string = f ‘my name is ‘ :{name} and my age is :{age}’

Print(f_string)

format() function

➢str.format()` is one of the string formatting methods in Python3, which allows multiple
substitutions and value formatting. This method lets us concatenate elements within a string
through positional formatting.

➢* __Syntax__ : `{ } .format(value)`

➢ Parameters : `(value)` : Can be an integer, floating point numeric constant, string, characters
or even variables .Returntype : Returns a formatted string with the value passed as parameter
in the placeholder position. The placeholders can be identified using named indexes {price},
numbered indexes {0}, or even empty placeholders {}

String Formatting

Python uses C-style string formatting to create new, formatted strings. The "%" operator is used
to format a set of variables enclosed in a "tuple" (a fixed size list), together with a format string,
which contains normal text together with "argument specifiers", special symbols like "%s" and
"%d".

➢s – strings

➢d – decimal integers (base-10)

➢f – floating point display

➢c – character

➢b – binary

➢o – octal

➢x – hexadecimal with lowercase letters after 9

➢X – hexadecimal with uppercase letters after 9

➢e – exponent notation

BOOLEANS

• Booleans are probably the most simple data type in Python. They can only have

• one of two values, namely True or False. It’s a binary data type. We will use it a

• lot when we get to conditions and loops. The keyword here is bool.

LIST []

• Python knows a number of compound data types, used to group together other values. The
most versatile is the list, which can be written as a list of comma-separated values (items)
between square brackets []. Lists might contain items of different types, but usually the items
all have the same type.

➢ List is a collection which is ordered and changeable. Allows duplicate members.

➢ In Python lists are written with square brackets.

➢ Note: Python Lists replace Arrays (from most programming languages)

• numbers = [10, 22, 6, 1, 29]

In Python, we define lists by using square brackets. We put the elements in between of those

and separate them by commas. The elements of a list can have any data type and we can

also mix them.

• numbers = [10, 22, 6, 1, 29]

• names = ["John", "Alex", "Bob"]

• mixed = ["Anna", 20, 28.12, True]

➢print(numbers[2])

➢print(mixed[1])

➢print(names[0])

In a list, we can also modify the values. For this, we index the elements in the same way.

➢numbers[1] = 10

➢names[2] = "Jack”

Other method of list are as below

➢len(variable_name)

➢Sum()

➢Max()

➢Index()

➢Count()

➢Reverse()

➢Sort(), sort(reverse=True)

➢Append(), insert(), remove(), pop(), copy(),del(),extend()

Tuple

A tuple is a collection which is ordered and unchangeable. In Python tuples are written with
round brackets ().

➢ Python tuple is much like a list except that it is immutable or unchangeable once created.

➢Tuples use parentheses and creating them is as easy as putting different items separated by
a comma between parentheses.

Slicing :

➢If you omit the first index, the slice starts at the beginning. If you omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of the whole list.

Tuple Values :

• Once a tuple is created, you cannot change its values. Tuples are unchangeable, or
immutable as it also is called. But there is a workaround. You can convert the tuple into a list,
change the list, and convert the list back into a tuple

Dictionaries

A dictionary is like a list, but more general. In a list, the index positions have to be integers; in
a dictionary, the indices can be (almost) any type. The function dict creates a new dictionary
with no items. Because dict is the name of a built-in function, you should avoid using it as a
variable name. A dictionary is a collection which is unordered, changeable and indexed. In
Python dictionaries are written with curly brackets, and they have keys and values.

➢ dct = {"Name": "John",

"Age": 25,

"Height": 6.1}

➢print(dct["Name"])

➢print(dct["Age"])

➢print(dct["Height"])

INPUT FUNCTION

➢number1 = input("Enter first number: ")

➢number2 = input("Enter second number: ")

➢sum = number1 + number2

➢print("Result: ", sum)

➢number1 = input("Enter first number: ")

➢number2 = input("Enter second number: ")

➢number1 = int(number1)

➢number2 = int(number2)

➢sum = number1 + number2

➢print("Result: ", sum)

PRINT()

• Description:

• Displays output to the console

• Example:

• print('Hello, World!')

INPUT()

• Description:

• Takes user input

• Example:

• name = input('Enter your name: ')

LEN()

• Description:

• Returns the length of an object

• Example:

• len([1, 2, 3]) # Output: 3

TYPE()

• Description:

• Returns the type of an object

• Example:

• type(42) # Output: <class 'int'>

INT()

• Description:

• Converts a value to an integer

• Example:

• int('42') # Output: 42

FLOAT()

• Description:

• Converts a value to a float

• Example:

• float('3.14') # Output: 3.14

STR()

• Description:

• Converts a value to a string

• Example:

• str(42) # Output: '42'

RANGE()

• Description:

• Generates a sequence of numbers

• Example:

• list(range(5)) # Output: [0, 1, 2, 3, 4]

LIST()

• Description:

• Creates a list

• Example:

• list('abc') # Output: ['a', 'b', 'c']

DICT()

• Description:

• Creates a dictionary

• Example:

• dict(key='value') # Output: {'key': 'value'}

SET()

• Description:

• Creates a set

• Example:

• set([1, 2, 2, 3]) # Output: {1, 2, 3}

HELP()

• Description:

• Displays the documentation of a function

• Example:

• help(len)

SORTED()

• Description:

• Returns a sorted list

• Example:

• sorted([3, 1, 2]) # Output: [1, 2, 3]

SUM()

• Description:

• Returns the sum of elements

• Example:

• sum([1, 2, 3]) # Output: 6

MAX()

• Description:

• Returns the maximum element

• Example:

• max([1, 2, 3]) # Output: 3

MIN()

• Description:

• Returns the minimum element

• Example:

• min([1, 2, 3]) # Output: 1

ABS()

• Description:

• Returns the absolute value

• Example:

• abs(-5) # Output: 5

OPEN()

• Description:

• Opens a file

• Example:

• open('file.txt', 'r')

APPEND()

• Description:

• Adds an item to a list

• Example:

• lst = [1, 2]; lst.append(3) # Output: [1, 2, 3]

POP()

• Description:

• Removes and returns an item from a list

• Example:

• lst = [1, 2, 3]; lst.pop() # Output: 3

DEFINING FUNCTIONS

➢A function is a reusable block of code designed to perform a specific computation or task. It consists of a name,
a set of parameters (optional), and a sequence of statements that define its behavior. Here’s a breakdown of key
points:

Defining a Function:

➢ Functions are defined using the def keyword.

➢ The syntax includes the function name followed by a parenthesized list of parameters (if any).

➢ The body of the function begins on the next line and must be indented.

Key Characteristics of Functions:

➢A function is executed only when explicitly called.

➢ • It can accept inputs, called parameters, to customize its behavior.

➢ • A function can return a result to the caller using the return statement.

Function definition

def greet(name):

"""This function greets the person with the provided name."""

print(f"Hello, {name}!")

Calling the function

greet("Alice") # Output: Hello, Alice!

➢def hello():

➢print("Hello")

If we want to make our functions more dynamic, we can define parameters. These parameters
can then be processed in the function code.

➢def print_sum(number1, number2):

➢print(number1 + number2)

RETURN Statement

• def add(number1, number2):

• return number1 + number2

Here we return the sum of the two parameters instead of printing it. But we can then use this
result in our code.

• number3 = add(10, 20)

• print(add(10, 20))

Arguments (Parameters) in Functions

• Functions become more versatile and powerful when they accept arguments. Arguments allow you to pass information into
a function, enabling it to work with different data during each call.

Types of Function Arguments:

1. Positional Arguments:

➢ Passed to the function in the order they appear.

➢ The function processes these arguments based on their position.

• 2. Keyword Arguments:

➢ Passed using a key-value pair format (key=value).

➢ The order does not matter as the arguments are identified by their names.

Key-Points:
➢ Passing Arguments: Functions accept arguments to process new values and perform specific tasks.

➢ Positional vs Keyword:

➢ Positional Arguments: Depend on the order in which they are provided during the function call.

➢ Keyword Arguments: Explicitly associate values with parameter names, improving readability and reducing the chance of errors.

Example :

Function with positional and keyword arguments

def calculate_area(length, width=5):

"""Calculate area of a rectangle."""

return length * width

Using positional arguments

print(calculate_area(10, 20)) # Output: 200

Using a mix of positional and keyword arguments

print(calculate_area(length=10, width=15)) # Output: 150

Using a single positional argument with default keyword value

print(calculate_area(10)) # Output: 50

Lambda Functions in Python

A lambda function is a small, anonymous function defined using the lambda keyword. It can take any
number of arguments but is restricted to a single expression. The result of the expression is
automatically returned.

lambda arguments: expression

Characteristics:

1. Anonymous: Lambda functions do not require a name.

2. Single Expression: The function body can only have one line.

3. Short and Concise: Useful for simple operations.

Examples :

1# Define a lambda function to add two numbers

add = lambda x, y: x + y

print(add(5, 10))

Output: 15

2# Lambda function to calculate the square of a number

square = lambda x: x ** 2

print(square(4))

Output: 16

Use filter to extract even numbers from a list

numbers = [1, 2, 3, 4, 5, 6]

even_numbers = list(filter(lambda x: x % 2 == 0, numbers))

print(even_numbers) # Output: [2, 4, 6]

Double each number in a list using map

numbers = [1, 2, 3, 4]

doubled = list(map(lambda x: x * 2, numbers))

print(doubled) # Output: [2, 4, 6, 8]

Sort a list of tuples by the second element

pairs = [(1, 'one'), (2, 'two'), (3, 'three')]

sorted_pairs = sorted(pairs, key=lambda x: x[1])

print(sorted_pairs) # Output: [(1, 'one'), (3, 'three'), (2, 'two')]

Reading and Writing Files (file I/O)

• open() returns a file object, and is most commonly used with two arguments:
open(filename, mode).

• The key function for working with files in Python is the open() function.

• The open() function takes two parameters; filename, and mode.

• There are four different methods (modes) for opening a file

• ➢ "r" - Read - Default value. Opens a file for reading, error if the file does not exist

• ➢ "a" - Append - Opens a file for appending, creates the file if it does not exist

• ➢ "w" - Write - Opens a file for writing, creates the file if it does not exist

• ➢ "x" - Create - Creates the specified file, returns an error if the file exists

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is only omitted on the
last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if f.readline() returns an
empty string, the end of the file has been reached, while a blank line is represented by '\n', a string containing only a single
newline.

Create a sample text file

with open("sample.txt", "w") as file:

file.write("Hello, World!\n")

file.write("\n") # Blank line

file.write("Welcome to Python.\n")

Reading the file line by line using f.readline()

with open("sample.txt", "r") as file:

while True:

line = file.readline()

Check if end of file is reached

if line == '':

print("End of file reached.")

break

elif line == '\n': # Check for blank line

print("This is a blank line.")

else:

print(f"Read line: {line.strip()}")

• Reading and Writing Files

• `open()` returns a file object, and is most commonly used with two arguments:
`open(filename, mode)`.

Write to an Existing File

➢Common Modes:

➢• “r” (Read): Default mode; opens the file for reading.

➢• “w” (Write): Opens the file for writing. Overwrites existing content or creates a new file if it doesn’t exist.

➢• “a” (Append): Opens the file for appending new content to the end without modifying existing content.

1# Writing new content to a file (overwriting if it exists)

with open("example_write.txt", "w") as file:

file.write("This is the first line of the file.\n")

file.write("This will overwrite any existing content.\n")

print("File written using 'w' mode.")

Appending content to an existing file

with open("example_write.txt", "a") as file:

file.write("This line is added to the existing content.\n")

file.write("Appending doesn't overwrite the file.\n")

print("File updated using 'a' mode.")

	Slide 1: Python – Basic Course
	Slide 2: WHY Python for Data Science
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: print()
	Slide 20: input()
	Slide 21: len()
	Slide 22: type()
	Slide 23: int()
	Slide 24: float()
	Slide 25: str()
	Slide 26: range()
	Slide 27: list()
	Slide 28: dict()
	Slide 29: set()
	Slide 30: help()
	Slide 31: sorted()
	Slide 32: sum()
	Slide 33: max()
	Slide 34: min()
	Slide 35: abs()
	Slide 36: open()
	Slide 37: append()
	Slide 38: pop()
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

