
▪ Source: python.org And w3school.com

Python Basics Tutorial

Why Python ?

▪ If you are working on DATA You should know python and python is
commonly for

▪ For Data Engineering

▪ For Machine Learning

▪ For Data Science

▪ For Deep Learning

Data is the base in this subject, doesn’t matter what field you want to be in, it’s going to
be there. Python is one of the commonly used programming languages for Data
Engineering , Data Science, Deep Learning and Machine Learning. Considering the
growing Machine Learning is having, you should give it a try

Python is an Open Source. For more than 20 years, Python has been cross-platform and open source.
You can code on Linux, Windows and Mac OS.

❖ Reduce development time

❖ Object Oriented Language

❖ No compile

❖ Supports dynamic data type

❖ Reduce code length

❖ Easy to learn and use as developers

❖ Easy to understand codes

❖ Easy to do team projects

❖ Easy to extend to other languages

❖ Automatic memory management

❖ It’s free (open source)

Benefits Python?

Why Python? Why Not SQL?
❖ SQL For Processing, Storing and analysing Structured data

❖ Python for Processing , Storing and Analysing Any Type of data (Structured data, Semi
Structured Data and Un-Structured Data)

data generation sources

Basics
❖ Python Data Types

Numbers ,Strings....
❖ Data Structures (collections)

Lists, and Tuples ,Dictionaries and Sets
❖ Conditionals and Loop Control Statements

if , for, while,pass,break,continue...
❖ Functions

Advanced
❖ Files and Input/Output
❖ Exception Handling
❖ List Comprehension
❖ Lambda Expressions
❖ Regular Expressions
❖ Modules and Logging

Python Tutorial Content

Python Identifier is the name we give to identify a variable, list, tuple, sets, dictionary, function, class,
module or other object. That means whenever we want to give an entity a name, that’s called identifier.

Sometimes variable and identifier are often misunderstood as same but they are not. Well for clarity,
let’s see what is a variable?

What are Python Identifiers?

What is a Variable in Python?
A variable, as the name indicates is something whose value is changeable over time. In fact a variable is
a memory location where a value can be stored. Later we can retrieve the value to use. But for doing it
we need to give a nickname to that memory location so that we can refer to it. That’s identifier, the
nickname.

The print() function prints the specified message to the screen, or other standard output device.
The message can be a string, or any other object, the object will be converted into a string before
written to the screen.

What is print()?

Keywords
The following identifiers are used as reserved words, or keywords of the language, and cannot be used
as ordinary identifiers. They must be spelled exactly as written here (case-sensitive):

Variables : A variable, as the name indicates is something whose value is changeable
over time. In fact a variable is a memory location where a value can be stored

Multiple Assignment
Python allows you to assign a single value to several variables simultaneously

Strings
Besides numbers, Python can also manipulate strings, which can be expressed in several ways.
They can be enclosed in single quotes ('...') or double quotes ("...") with the same result 2. \ can
be used to escape quotes:

Numbers
The interpreter acts as a simple calculator : you can type an expression at it and it will write the value.
Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages
(for example, Pascal or C); parentheses (()) can be used for grouping. For example:

Division (/) always returns a float. To do floor division and get an integer result (discarding any fractional
result) you can use the // operator; to calculate the remainder you can use %:

it is possible to use the ** operator to calculate powers

The equal sign (=) is used to assign a value to a variable.

‘+’ for Concatenating two strings for string data type variables And Addition for Integer data type variables

Variable Type Change (Casting)
Python Variables data type created at dynamically based on data. If we want to convert different datatype
we ca use
Casting functions.

int() - constructs an integer number from an integer literal, a float literal (by removing all decimals), or a
string literal (providing the string represents a whole number)
float() - constructs a float number from an integer literal, a float literal or a string literal (providing the
string represents a float or an integer)
str() - constructs a string from a wide variety of data types, including strings, integer literals and float
literals

F-strings
F-Strings provide a way to embed expressions inside string literals, using a minimal syntax. It should be
noted that an f-string is really an expression evaluated at run time, not a constant value. In Python source
code, an f-string is a literal string, prefixed with 'f', which contains expressions inside braces. The expressions
are replaced with their values.

format() function
* `str.format()` is one of the string formatting methods in Python3, which allows multiple substitutions and value
formatting. This method lets us concatenate elements within a string through positional formatting.
* __Syntax__ : `{ } .format(value)`
 Parameters : `(value)` : Can be an integer, floating point numeric constant, string, characters or even variables.
 Returntype : Returns a formatted string with the value passed as parameter in the placeholder position.
The placeholders can be identified using named indexes {price}, numbered indexes {0}, or even empty
placeholders {}.

String Formatting
Python uses C-style string formatting to create new, formatted strings. The "%" operator is used to format a set of variables
enclosed in a "tuple" (a fixed size list), together with a format string, which contains normal text together with "argument
specifiers", special symbols like "%s" and "%d".
s – strings
d – decimal integers (base-10)
f – floating point display
c – character
b – binary
o – octal
x – hexadecimal with lowercase letters after 9
X – hexadecimal with uppercase letters after 9
e – exponent notation

Python Data Types
There are different types of data types in Python. Some built-in Python data types
are:

➢ Numeric data types: int, float, complex

➢ String data types: str

➢ Sequence types: list, tuple, range

➢ Binary types: bytes, bytearray, memoryview

➢ Mapping data type: dictionary

➢ Boolean type: bool

➢ Set data types: set, frozenset

➢ Data Structures (collections): list, tuple, range, set, frozenset,

dictionary

Complex numbers have a real and imaginary part, which are each implemented using double in C.
To extract these parts from a complex number z, use z.real and z.imag.

➢ Returns a complex number constructed from arguments
➢ Complex numbers are specified as `<real part>+<imaginary part>j`.
➢ J (or j) represents the square root of -1 (which is an imaginary number)
➢ Syntax `complex(re,im) ` a complex number with real part re, imaginary part im. im defaults to zero.
➢ Complex numbers have a real and imaginary part, which are each implemented using double in C. To

extract these parts from a complex number z, use z.real and z.imag.

Complex integer data type

Range data Type
➢ syntax: range(start, stop, step)
➢ The range() function is used to generate a sequence of numbers over time.
➢ At its simplest, it accepts an integer and returns a range object (a type of

Iterable)
➢ start: Optional. An integer number specifying at which position to start.

Default is 0
➢ Stop: Required. An integer number specifying at which position to stop (not

included).
➢ Step: Optional. An integer number specifying the incrementation. Default is 1

Python knows a number of compound data types, used to group together other values. The most versatile is the list, which can be
written as a list of comma-separated values (items) between square brackets []. Lists might contain items of different types, but usually
the items all have the same type.

➢ List is a collection which is ordered and changeable. Allows duplicate members.
➢ In Python lists are written with square brackets.
➢ Note: Python Lists replace Arrays (from most programming languages)

LIST []

lists can be indexed and sliced
Range of Indexes
➢ You can specify a range of indexes by specifying where to start and where to end the range.
➢ When specifying a range, the return value will be a new list with the specified items.

Slicing starting from minimum index 0

Slicing Ending with maximum index value available in list

If you omit the first index, the slice starts at the beginning. If you omit the second, the
slice goes to the end. So if you omit both, the slice is a copy of the whole list.

List methods
Python provides methods that operate on lists. For example, append adds a new
element to the end of a list

Inserting or appending new item or value into LIST using `append`

if we want add any value in between we can go with `insert` specifying index value

extend takes a list as an argument and appends all of the elements

sort arranges the elements of the list from low to high

sort with reverse arranges the elements of the list from high to low

List Length
To determine how many items a list has, use the
len() function

Removing individual items from LIST we ca use `remove` method with
value

Deleting elements from LIST

Remove last item from list is `pop()` it will be removed last item
from list
Removed item can be returned to variable.

Removing item using index

Removing item using del method based on index

Clearing all values using clear method and making empty list []

Deleting entire object

COPY
You cannot copy a list simply by typing list2 = list1, because: list2 will only be a reference to list1, and
changes made in list1 will automatically also be made in list2.
There are ways to make a copy, one way is to use the built-in List method copy().

copylist will only be a reference to thislist. If we add a value in thislist and same value will be available in copylist. Bcz its
referring
Original list.

Tuple
➢ A tuple is a collection which is ordered and unchangeable. In Python tuples are written with round

brackets ().
➢ Python tuple is much like a list except that it is immutable or unchangeable once created.
➢ Tuples use parentheses and creating them is as easy as putting different items separated by a comma

between parentheses.

Range of Indexes
You can specify a range of indexes by specifying where to start and where to end the range.
When specifying a range, the return value will be a new tuple with the specified items.

Negative Indexing
Negative indexing means beginning from the end, -1 refers to the last item, -2 refers to the second
last item etc.

If you omit the first index, the slice starts at the beginning. If you omit the second, the slice goes to the
end. So if you omit both, the slice is a copy of the whole list.

Slicing

Change Tuple Values
Once a tuple is created, you cannot change its values. Tuples are unchangeable, or immutable as it also is
called.
But there is a workaround. You can convert the tuple into a list, change the list, and convert the list back
into a tuple.

Remove Items
➢ Tuples are unchangeable, so you cannot remove items from it, but you can delete the tuple

completely
➢ The del keyword can delete the tuple completely

Join Two Tuples
To join two or more tuples you can use the +
operator

Nested Tuples
It is also possible to create a tuple of tuples or tuple
of lists.

Sets
Python also includes a data type for sets. A set is an unordered collection with no duplicate elements. Basic
uses include membership testing and eliminating duplicate entries. Set objects also support mathematical
operations like union, intersection, difference, and symmetric difference.

Curly braces or the set() function can be used to create sets. Note: to create an empty set you have to use
set(), not {}; the latter creates an empty dictionary, a data structure that we discuss in the next section.

Access Sets Items
You cannot access items in a set by referring to an index or a key.
But you can loop through the set items using a for loop, or ask if a specified value is present in a set, by
using the in keyword.

Add Items
To add one item to a set use the add() method.

To add more than one item to a set use the update() method.

Get the Length of a Set using len() method.

Remove Item from Sets
To remove an item in a set, use the remove() or the discard() method.

You can also use the pop(), method to remove an item, but this method will remove the last item.
Remember that sets are unordered, so you will not know what item that gets removed.

 The return value of the pop() method is the removed item.

The clear() method empties the set

The del keyword will delete the set completely

Join Two Sets
There are several ways to join two or more sets in Python.
You can use the union() method that returns a new set containing all items from both sets.
update() method that inserts all the items from one set into another

Intersection : will get common matching data items from both datasets.
A union B, B union A and A intersection B and B intersection A will get same results

Difference (Minus or Subtract) Set Operator
Subtracting right side data set values in left dataset and displaying remaining left dataset
values.
Note: A Difference B and B Difference A will get different result set

Dictionaries
A dictionary is like a list, but more general. In a list, the index positions have to be integers; in a
dictionary, the indices can be (almost) any type.
➢ You can think of a dictionary as a mapping between a set of indices (which are called keys) and a set

of values. Each key maps to a value. The association of a key and a value is called a key-value pair or
sometimes an item.

➢ The function dict creates a new dictionary with no items. Because dict is the name of a built-in
function, you should avoid using it as a variable name.

➢ A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries are
written with curly brackets, and they have keys and values.

Accessing Items
You can access the items of a dictionary by referring to its key name, inside square
brackets

There is also a method called get() that will give you the same
result

Change Values
You can change the value of a specific item by referring to its key name

Loop Through a Dictionary
You can loop through a dictionary by using a for loop.
When looping through a dictionary, the return value are the keys of the dictionary, but there are
methods to return the values as well.

You can also use the values() method to return values of a dictionary

You can also use the items() method to return keys and values of
a dictionary

Getting key names using keys() method

Check if Key Exists
To determine if a specified key is present in a dictionary use the in keyword

Adding Items
Adding an item to the dictionary is done by using a new index key and assigning a
value to it

Removing Items
There are several methods to remove items from a
dictionary

The popitem() method removes the last inserted item (in versions before 3.7, a random item is
removed instead)

 The del keyword removes the item with the specified key name

The del keyword can also delete the dictionary completely

The clear() method empties the dictionary

Copy a Dictionary
* You cannot copy a dictionary simply by typing dict2 = dict1, because: dict2 will only be a reference to
dict1, and changes made in dict1 will automatically also be made in dict2.
There are ways to make a copy, one way is to use the built-in Dictionary method copy()

Nested Dictionaries
A dictionary can also contain many dictionaries, this is called nested dictionaries.

Conditional execution
In order to write useful programs, we almost always need the ability to check conditions and change the
behaviour of the program accordingly. Conditional statements give us this ability. The simplest form is the
if statement:

The Boolean expression after the if statement is called the condition. We end the if statement with a
colon character (:) and the line(s) after the if statement are indented.

Alternative execution (If Else)
A second form of the if statement is alternative execution, in which there are two possibilities and the
condition determines which one gets executed. The syntax looks like this:

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program displays a
message to that effect. If the condition is false, the second set of statements is executed.

If-Then-Else Logic
Since the condition must either be true or false, exactly one of the alternatives will be executed. The
alternatives are called branches, because they are branches in the flow of execution.

Chained conditionals
Sometimes there are more than two possibilities and we need more than two branches. One way to
express a computation like that is a chained conditional:

elif is an abbreviation of “else if.” Again,
exactly one branch will be executed.

Nested if conditionals
One conditional can also be nested within another. We could have written the three-branch example
like this:

The outer conditional contains two branches. The first branch contains a simple statement. The second
branch contains another if statement, which has two branches of its own. Those two branches are both
simple statements, although they could have been conditional statements as well.

Short Hand If
If you have only one statement to execute, you can put it on the same line as the if
statement.

Short Hand If ... Else
If you have only one statement to execute, one for if, and one for else, you can put it all on the same
line:

One line if else statement, with 3 conditions:
This technique is known as Ternary Operators, or Conditional Expressions.
Ternary operators also known as conditional expressions are operators that evaluate something based
on a condition being true or false. It was added to Python in version 2.5. It simply allows to test a
condition in a single line replacing the multiline if-else making the code compact.

Nested If
You can have if statements inside if statements, this is called nested if
statements.

The pass Statement
if statements cannot be empty, but if you for some reason have an if statement with no content, put in
the pass statement to avoid getting an error.

Python Loops
There are two types of loops available in python. Those are for loops and while loops.

➢ for loop
➢ while loop

For Loops with range()
➢ A for loop is a programming structure where a user-defined block of code runs a specified number of

times.
➢ Another method to print the same statement three times is to use a for loop.
➢ The basic structure of a for loop in Python is below:

`for var in range(num):`

 `code`

For loops with lists
For loops can also be run using Python lists.
If a list is used, the loop will run as many times as there are items in the list.
The general structure is:

`for <var> in <list>:`

 ` <statements>`

The break Statement In For Loop
With the break statement we can stop the loop before it has looped through all the items:

The continue Statement
With the continue statement we can stop the current iteration of the loop, and continue with the
next

The while Loop
With the while loop we can execute a set of statements as long as a condition is true.
syntax: `while condition:`
 `statements `

The break Statement
With the break statement we can stop the loop even if the while condition
is true:

The continue Statement
With the continue statement we can stop the current iteration,
and continue with the next

The else Statement
With the else statement we can run a block of code once when the condition no
longer is true

Creating list using `For Loop` , `If Condition ` And
`Range()`

To find sum from 0 to 1000

To find sum from 0 to 1000 (only even)

Functions
In the context of programming, a function is a named sequence of statements that performs a
computation. When you define a function, you specify the name and the sequence of statements.
➢ The keyword def introduces a function definition.
➢ It must be followed by the function name and the parenthesized list of formal parameters.
➢ The statements that form the body of the function start at the next line, and must be indented.
➢ A function is a block of code which only runs when it is called.
➢ You can pass data, known as parameters, into a function.
➢ A function can return data as a result.

Arguments (parameters)
 Information can be passed into functions as arguments.

Function arguments: positional, keyword

✓ A function is most useful when arguments are passed to the function.
✓ New values for times are processed inside the function.
✓ This function is also a ``'positional' argument, vs a keyword` argument.
✓ Positional arguments are processed in the order they are created in.

Keyword Arguments are processed by key, value and can have default values
✓ You can also send arguments with the key = value syntax.
✓ One handy feature of keyword arguments is that you can set defaults and only change the defaults

you want to change.

Default Parameter Value
The following example shows how to use a default parameter value.
If we call the function without argument, it uses the default value:

Variable Number of Arguments (`*args`)
In cases where you don’t know the exact number of arguments that you want to pass to a
function,
you can use the following syntax with *args:

Nested functions

 Python Lambda Function
 A lambda function is a small anonymous function.
 A lambda function can take any number of arguments, but can have one line
expression.
Syntax
`lambda arguments : expression`

Local Vs Global Variables
if we want to change the Global Variable value inside functions Use `GLOBAL` Keyword..

With GLOBAL keyword making global.
Without global keyword default variable value is inside function (scope is within function and
its wont update outside
Variable)

Exception and Error Handling
➢ Until now error messages haven’t been more than mentioned, but if you have tried out the

examples you have probably seen some.
➢ There are (at least) two distinguishable kinds of errors: syntax errors and exceptions.
Exceptions
➢ Even if a statement or expression is syntactically correct, it may cause an error when an attempt

is made to execute it.
➢ Errors detected during execution are called exceptions and are not unconditionally fatal:
➢ you will soon learn how to handle them in Python programs.
➢ Most exceptions are not handled by programs, however, and result in error messages as shown

here
Try Block
here we can write our code - main execution code we can write in try
block
Exception blob
here we can handle whichever exception or error throwing by try
block

Multiple Exception handling

Raising Exceptions
The raise statement allows the programmer to force a specified exception to occur. For
example:

If a finally clause is present, the finally clause will execute as the last task before the try statement
completes. The finally clause runs whether or not the try statement produces an exception. The following
points discuss more complex cases when an exception occurs:

✓ If an exception occurs during execution of the try clause, the exception may be handled by an except clause. If the
exception is not handled by an except clause, the exception is re-raised after the finally clause has been executed.

✓ An exception could occur during execution of an except or else clause. Again, the exception is re-raised after the finally
clause has been executed.

✓ If the try statement reaches a break, continue or return statement, the finally clause will execute just prior to the break,
continue or return statement’s execution.

✓ If a finally clause includes a return statement, the returned value will be the one from the finally clause’s return statement,
not the value from the try clause’s return statement.

The try … except statement has an optional else clause, which, when present, must follow all except
clauses. It is useful for code that must be executed if the try clause does not raise an exception. For
example:

Reading and Writing Files (file I/O)
open() returns a file object, and is most commonly used with two arguments: open(filename,
mode).

The key function for working with files in Python is the open() function.

The open() function takes two parameters; filename, and mode.
There are four different methods (modes) for opening a file

➢ "r" - Read - Default value. Opens a file for reading, error if the file does not exist
➢ "a" - Append - Opens a file for appending, creates the file if it does not exist
➢ "w" - Write - Opens a file for writing, creates the file if it does not exist
➢ "x" - Create - Creates the specified file, returns an error if the file exists

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and is
only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value
unambiguous; if f.readline() returns an empty string, the end of the file has been reached, while a blank
line is represented by '\n', a string containing only a single newline.

File Handling
Reading and Writing Files
`open()` returns a file object, and is most commonly used with two arguments: `open(filename, mode)`.

Write to an Existing File
To write to an existing file, you must add a parameter to the open() function:
"a" - Append - will append to the end of the file
"w" - Write - will overwrite any existing content

Regular expressions
Regular expressions are almost their own little programming language for searching and parsing strings.
As a matter of fact, entire books have been written on the topic of regular expressions. In this chapter,
we will only cover the basics of regular expressions. For more detail on regular expressions, see:

The regular expression library re must be imported into your program before you can use it. The
simplest use of the regular expression library is the search() function. The following program
demonstrates a trivial use of the search function.

findall Returns a list containing all matches
search Returns a Match object if there is a match anywhere in the string
split Returns a list where the string has been split at each match
sub Replaces one or many matches with a string

Examples

