
   

 

Abstract 

Regression analysis is one of the most widely used methods for predictions, 

applied whenever we have a causal relationship between variables. A large 

portion of the predictive modelling that occurs in practice is carried out through 

regression analysis. It becomes extremely powerful when combined with 

techniques like factor analysis.  

Regression models help us make predictions about the population based 

on sample data. 

 

Get a sample data 

 

 

 

Design a model 

 

 

 

Make predictions about the whole population  



   

 

Section 1: Linear Regression 

A linear regression is a linear approximation of a causal relationship 

between two or more variables. It is probably the most fundamental machine 

learning method and a starting point for the advanced analytical learning path of 

every aspiring data scientist.  

 

 

1.1 The linear regression model 

As many other statistical techniques, regression models help us make 

predictions about the population based on sample data.  

Variables: 

Dependent (predicted): Y 

Independent (predictors): 𝑥1, 𝑥2, 𝑥3…𝑥𝑘 

Y is a function of the x variables, and the regression model is a linear 

approximation of this function. The equation describing how Y is related to x is: 

Simple linear regression model (population): 

Y =  𝛽0 + 𝛽1𝑥1 + 𝜀  

Y – dependent variable 

𝑥1 – independent variable 

𝛽0–  constant/intercept 

𝛽1–  coefficient – quantifies the effect of 𝑥1 on 𝑦̂ 

𝜀 – error of estimation 

 



   

 

Simple linear regression equation (sample):  

𝑦̂  =  𝑏0 + 𝑏1𝑥1 

𝑦̂  – estimated/predicted value 

𝑏0– coefficient – estimate of 𝛽0 

𝑏1– coefficient – estimate of 𝛽1   

𝑥1 – sample data for the independent variable 

𝜀 – error of estimation 

When using regression analysis, the goal is to predict the value of Y, 

based on the value of x. 

 

 

1.2 Correlation vs regression 

Correlation - measures the degree of relationship between two variables 

Regression - shows how one variable affects another or what changes it 

causes to the other 

Correlation                                                                              Regression 

The relationship between two variables                 How one variable affects another  

Movement together                                                    Cause and effect 

Symmetrical                     One-way 

A single point          A line 

 

Comparison between correlation and regression 

 



   

 

Linear regression analysis is known for the best fitting line that goes 

through the data points and minimizes the distance between them. 

 

 

1.3 Geometrical representation of the Linear Regression Model 

𝑦̂  =  𝑏0 + 𝑏1𝑥1 

 

 

The linear regression model 

 

Data points – the observed values (x) 

𝑏0 - a constant - the intercept of the regression line with the y axis 

𝑏1 - the slope of the regression line – shows how much y changes for each 

unit change of x 

𝑒̂𝑖 – estimator of the error - the distance between the observed values and 

the regression line 

ŷ - the value predicted by the regression line 

Regression line – the best fitting line through the data points 

𝑦̂𝑗 

𝑥̂𝑗 



   

 

1.4 Regression in Python 

Coding steps: 

• Importing the relevant libraries 

• Loading the data 

• Defining the dependent and the independent variables following the 

regression equation 

• Exploring the data 

• Plotting a scatter plot 

• Regression itself 

• Adding a constant  

• Fitting the model according to the OLS method with a dependent 

variable y and an independent variable x 

▪ Ordinary least squares (OLS) – a method for finding the line 

which minimizes the SSE 

• Printing a summary of the regression 

 

A summary table in Jupyter Notebook 



   

 

• Creating a scatter plot 

• Defining the regression equation 

• Plotting the regression line 

 

Plotted regression line in Jupyter Notebook 

 

 

1.5 Interpreting the regression table 

Summary table and important regression metrics 

• A model summary 

 

Model summary table 

 Dep. Variable - the dependent variable, y; This is the variable we are trying 

to predict 



   

 

 R-squared - variability of the data, explained by the regression model. 

Range: [0;1]   

 Adj. R-squared - variability of the data, explained by the regression model, 

considering the number of independent variables. Range: < 0; could be negative, 

but a negative number is interpreted as 0 

 F-statistic - evaluates the overall significance of the model (if at least 1 

predictor is significant, F-statistic is also significant). The lower the F-statistics, the 

closer to a non-significant model 

 Prob (F-statistic) - P-value for F-statistic 

• A coefficients table 

 

 std err = standard error – shows the accuracy of the prediction for each 

variable 

 

Coefficient of the intercept, 𝑏0; sometimes we refer to this variable as 

constant or bias (as it ‘corrects’ the regression equation with a constant 

value) 

 



   

 

Coefficient of the independent variable i: 𝑏𝑖; this is usually the most 

important metric – it shows us the relative/absolute contribution of each 

independent variable of our model 

 

  P-value of t-statistic; The t-statistic of a coefficient shows if the 

corresponding independent variable is significant or not 

• Additional tests 

 

  A way for detecting autocorrelation (a violation of the fourth OLS 

assumption) 

 

 

Decomposition of variability 

Variance - a measure of variability calculated by taking the average of 

squared deviations from the mean. It describes how far the observed values differ 

from the average of predicted values 

• Explained variability - variability explained by the explanatory variables 

used in our regression 

• Unexplained variability - variability explained by other factors that are 

not included in the model 



   

 

• Total variability - variability of the outcome variable  

 

The total variability of the data set is equal to the variability explained by the 

regression line plus the unexplained variability, known as error. 

• Sum of squares total (SST) = Total sum of squares (TSS) – measures the 

total variability of the dataset 

SST = ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1  

𝑦𝑖 – observed dependent variable 

𝑦̅ - mean of the dependent variable 

• Sum of squares regression (SSR) = Explained sum of squares (ESS) – 

measures the explained variability by the regression line 

SSR = ∑ (𝑦̂𝑖 − 𝑦̅)2𝑛
𝑖=1  

𝑦̂𝑖- the predicted value of the dependent variable 

𝑦̅ - mean of the dependent variable 

• Sum of squares error (SSE) = Residual sum of squares (RSS) – measures 

the unexplained variability by the regression 

SSE = ∑ 𝑒𝑖
2𝑛

𝑖=1  

𝑒𝑖 – the difference between the actual value of the dependent variable 

and the predicted value 

𝑒𝑖  =  𝑦𝑖  −  𝑦̂𝑖 

Total Variability = Explained variability + Unexplained variability: 

SST = SSR + SSE 

SSR       SSE 



   

 

1.6 OLS 

OLS or the ordinary least squares is the most common method to do estimate 

of the linear regression equation. “Least squares” stands for the minimum squares 

error, or SSE. This method aims to find the line, which minimizes the sum of the 

squared errors. 

𝑆(𝑏) = ∑ (𝑦 − 𝑥𝑏)2
𝑛

𝑖=1
 

 

There are other methods for determining the regression line. They are 

preferred in different contexts.  



   

 

 

 

 

1.7 R-squared 

R-squared - a measure describing how powerful a regression is. 

 

          0                                                                                                         1 

R-squared visual interpretation 

0 - The regression explains none of the variability 

1- The regression explains all of the variability 

R-squared is a relative measure and takes values ranging from 0 to 1. An R 

squared of zero means your regression line explains none of the variability of the 

data. An R squared of 1 would mean your model explains the entire variability of the 

data. Unfortunately, regressions explaining the entire variability are rare. What you 

will usually observe is values ranging from 0.2 to 0.9.  



   

 

1.8 Multiple linear regression 

Population model: 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . + 𝛽𝑘𝑥𝑘  +  𝜀  

Multiple regression equation: 

𝑦̂  =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2+ . . . +  + 𝑏𝑘𝑥𝑘 

𝑦̂ – inferred value 

𝑏0 – intercept 

𝑥1 . . . 𝑥𝑘 – independent variables 

𝑏1 . . . 𝑏𝑘 – corresponding coefficients 

• Addresses the higher complicity of a problem 

• Contains many more independent variables 

• It is not about the best fitting line as there is no way to represent the 

result graphically. Instead, it is about the best fitting model  

➔ min SSE 

SST = SSR + SSE 

SSR       SSE 

 

 

1.9 Adjusted R-squared 

Adjusted R-squared - measures how much of the total variability is 

explained by our model, considering the number of variables. The adjusted R 

squared is always smaller than the R squared, as it penalizes excessive use of 

variables. It is the basis for comparing models.  

Multiple linear regression and adjuster R-squared in Python 



   

 

Steps: 

• Importing the relevant libraries 

• Loading the data 

• Defining the dependent and the independent variables following the 

regression equation -  

• Regression itself 

• Adding a constant  

• Fitting the model according to the OLS method with a dependent 

variable y and an independent variable x, which can contain 

multiple values – for instance a DataFrame of Series  

• Printing a summary of the regression  

 

 

1.10 F-test 

The F-statistic is used for testing the overall significance of the model.  

F-test: 

𝐻0: 𝛽1 = 𝛽2 =. . . = 𝛽𝑘 =  0 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝑖 ≠  0 

If all betas are 0, then none of the Xs matter  

➔ our model has no merit 

The lower the F-statistic, the closer to a non-significant model. 

 

 



   

 

1.11 OLS Assumptions: Linearity 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . + 𝛽𝑘𝑥𝑘  +  𝜀  

The linear regression is the simplest non-trivial relationship. 

   

 

 

 

 

A linear relationship between two variables 

 

The easiest way is to verify if the relationship between two variables is linear 

is to choose an independent variable X one and plot it against the depended Y on 

a scatter plot. If the data points form a pattern that looks like a straight line, then a 

linear regression model is suitable. 

If the relationship is non-linear, you should not use the data before 

transforming it appropriately.  

Fixes: 

• run a non-linear regression 

• exponential transformation 

• log transformation 

 

 

y 

x 



   

 

1.12 OLS Assumptions: No endogeneity 

No endogeneity refers to the prohibition of a link between the independent 

variables and the errors, mathematically expressed in the following way: 

𝜎𝑋𝜀 =  0 ∶ ⩝  𝑥, 𝜀 

The error (the difference between the observed values and the predicted 

values) is correlated with the independent values. This is a problem referred to as 

omitted variable bias. Omitted variable bias is introduced to the model when you 

forget to include a relevant variable.  

As each independent variable explains y, they move together and are 

somewhat correlated. Similarly, y is also explained by the omitted variable, so they 

are also correlated. Chances are that the omitted variable is also correlated with at 

least one independent x. but it is not included it as a regressor. Everything that you 

don’t explain with your model goes into the error. So, the error becomes correlated 

with everything else.  

 

 

1.13 OLS Assumptions: Normality and homoscedasticity 

𝜀~ 𝑁(0, 𝜎2) 

• Normality = N – assuming the error is normally distributed 

• Zero mean - if the mean is not expected to be zero, then the line is not the 

best fitting one. However, having an intercept solves that problem, so in 

real-life it is unusual to violate this part of the assumption. 

• Homoscedasticity = equal variance - the error terms should have equal 

variance one with the other 



   

 

• Prevention:  

▪ Looking for omitted variable bias 

▪ Looking for outliers 

▪ Log transformation – creating a semi-log or a log-log model 

 

 

1.14 OLS Assumptions: No autocorrelation 

No autocorrelation = no serial correlation 

𝜎𝜀𝑖𝜀𝑗
= 0 ∶ ⩝ 𝑖 ≠  𝑗 

Errors are assumed to be uncorrelated.  

Serial correlation is highly unlikely to be found it in data taken at one 

moment of time, known as cross-sectional data. However, it is very common in 

time series data. 

Prevention: 

• Dublin-Watson test:  

• 2 – no autocorrelation 

• < 1 and >3 – cause an alarm 

When in the presence of autocorrelation - avoid the linear regression 

model! 

Alternatives: 

• Autoregressive model 

• Moving average model 

• Autoregressive moving average model 



   

 

• Autoregressive integrated moving average model 

 

 

1.15 OLS Assumptions: No multicollinearity 

ρ𝑥𝑖𝑥𝑗
≈ 1 ∶ ⩝ 𝑖, 𝑗;  𝑖 ≠  𝑗 

We observe multicollinearity when two or more variables have a high 

correlation. This poses a problem to our model.  

Multicollinearity is a big problem but is also the easiest to notice. Before 

creating the regression, find the correlation between each two pairs of independent 

variables, and you will know if a multicollinearity problem may arise.  

Fixes: 

• Dropping one of the two variables 

• Transforming them into one (e.g. average price) 

• Keeping them both while treating them with extreme caution 

The correct approach depends on the research at hand.  

 

 

1.16 Dealing with categorical data – Dummy variables 

Dummy – an imitation of categories with numbers 

Example: 

Attendance 

Categorical data                        Numerical data 

Yes                                             1 
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No                                              0 

 

In regression analysis, a dummy is a variable that is used to include 

categorical data into a regression model. 

 

Without categorical data:                         With categorical data: 

 

 

 

1.17 Underfitting and overfitting 

Underfitting model Overfitting model Good model 

Doesn’t capture the logic 

of the data 

The training model has 

focused on the particular 

training set so much, that 

it captures all the noise 

and “misses the point” 

Captures the 

underlying logic of 

the data 

Low train accuracy High train accuracy High train accuracy 

Low test accuracy Low test accuracy High test accuracy 



   

 

Comparison between an overfitted model, an underfitted model, and a good 

model 

 

 

1.18 Training and testing 

We split the data into training and testing parts and we train the model on 

the training dataset but test it on the testing dataset. The goal is to avoid the 

scenario where the model learns to predict the training data very well but fails 

when given new samples 

• Generating data we are going to split 

• Splitting the data 

• Exploring the results 

 

 

 

 

 

 

 

 

 

 

 



   

 

Section 2: Logistic Regression 

A logistic regression implies that the possible outcomes are not numerical, 

but rather – categorical. In the same way that we include categorical predictors into 

a linear regression through dummies, we can predict categorical outcomes through 

a logistic regression.  

 

Logistic regression 

 

 

2.1 Logistic vs logit function 

The main difference between logistic and linear regressions is the linearity 

assumption – logistic regressions are non-linear by definition. The logistic 

regression predicts the probability of an event occurring. Thus, we are asking the 

question: given input data, what is the probability of a student being admitted? 

Input                          Probability 

 

 

 

0 

1 



   

 

 

    Logistic function 

Logistic regression model: 

𝑝(𝑋)  =  
𝑒(𝛽0+𝛽1𝑥1+...+ 𝛽𝑘𝑥𝑘)

1 +  𝑒(𝛽0+𝛽1𝑥1+...+ 𝛽𝑘𝑥𝑘)
 

Exponential of a linear combination of inputs and coefficients, divided by, 

one, plus, the same exponential.  

After transforming, the expression looks like this: 

 LogIt regression model: 

 
𝑝(𝑋)

1 −  𝑝(𝑋)
 = 𝑒(𝛽0+𝛽1𝑥1+...+ 𝛽𝑘𝑥𝑘)  

The probability of the event occurring, divided by the probability of the 

event NOT occurring equals the exponential from above.  

𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) = 𝛽0 + 𝛽1𝑥1+. . . + 𝛽𝑘𝑥𝑘 

Linear regression is the basic of logistic regression.  

 

2.2 Building a logistic regression 

Steps when working with statsmodels.api: 

• Adding a constant 

• Applying the sm.Logit() method - takes as arguments the 

dependent variable and the independent variable 

• Fitting the regression 

 

 

Odds 



   

 

2.3 Understanding the tables 

 

 Method MLE = Maximum likelihood estimation  

• Likelihood function – a function which estimates how likely it is 

that the model at hand describes the real underlying relationship 

of the variables. The bigger the likelihood function, the higher the 

probability that our model is correct. 

MLE tries to maximize the likelihood function 

 LL-Null = Log likelihood-null – the log-likelihood of a model which has no 

independent variables 

 LLR p-value = Log likelihood ratio – measures if our model is statistically 

different from LL-null, a.k.a. a useless model 

 Pseudo R-squ. =  Pseudo R-squared – this measure is mostly useful for 

comparing variations of the same model. Different models will have completely 

different and incomparable Pseudo R-squares. 

• AIC 

• BIC 

• McFadden’s R-squared 



   

 

 

 

△ 𝑜𝑑𝑑𝑠 = 𝑒𝑏𝑘 

For a unit change in a variable, the change in the odds equals the exponential 

of the coefficient. That exactly is what provides us with a way to interpret the 

coefficients of a logistic regression. 

Binary predictors in a logistic regression - in the same way we create 

dummies for a linear regression, we can use binary predictors in a logistic 

regression. 



   

 

2.4 Calculating the accuracy of the model 

 

For 69 observations, the model predicted 0 when the true value was 0.  

For 90 observations, the model predicted 1, and it actually was 1. 

These cells indicate in how many cases the model did its job well.  

 

In 4 cases, the model predicted 0, while it was 1.  

In 5 cases, the regression predicted 1 while it was 0. 

The most important metric we can calculate from this matrix is the accuracy of 

the model.  

Confusion matrix 
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In 69 plus 90 of the cases, the model was correct. In 4 plus 5 of the cases, the 

model was incorrect. Overall, the model made an accurate prediction in 159 out of 

168 cases. That gives us a 159 divided by 168, which is 94.6% accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

Section 3: Cluster Analysis  

Cluster analysis is a multivariate statistical technique that groups 

observations on the basis some of their features or variables that they are 

described by. The goal of clustering is to maximize the similarity of observations 

within a cluster and maximize the dissimilarity between clusters. 

 

       Explore the data 

Cluster Analysis                

       Identify patterns 

 

 

Classification Clustering 

Model (Inputs) > Outputs > Correct 

values  

Model (Inputs) > Outputs > ? 

Predicting an output category, given 

input data 

Grouping data points together based 

on similarities among them  

 

Comparison between classification and clustering 

 

 

• Measuring the distance between two data points 

• Defining the term ‘centroid’ 

 



   

 

 

 

Euclidean distance 

 

Geometrical representation of the relationship between two points 

 

2D space: d(A,B) = d(B,A) = √(𝑥2 − 𝑥11)2 + (𝑦2 − 𝑦1)2 

3D space: d(A,B) = d(B,A) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

If the coordinates of A are (𝑎1, 𝑏1,…, 𝑎𝑛) and of B are (𝑏1, 𝑏2,… 𝑏𝑛): 

N-dim space: 

d(A,B) = d(B,A) = √(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 + ⋯ + (𝑎𝑛 − 𝑏𝑛)2 

 

Centroid – the mean position of a group of points 

 

 

 

 



   

 

Section 4: K-Means Clustering  

K-means is the most popular method for identifying clusters. 

• Choosing the number of clusters 

K – the number of clusters we are trying to identify 

• Specifying the cluster seeds based on a prior knowledge on the 

given data 

Seed – a starting centroid 

• Assigning each data point to a centroid based on proximity 

(measured with Euclidean distance) 

• Adjusting the centroids 

Reassigning the data points and recalculate the centroids 

 

Clusters 

 

The goal is to minimize the distance between the points in a cluster 

(WCSS) and maximize the distance between the clusters. 

WCSS - within-cluster sum of squares 

 



   

 

4.1 Selecting the number of clusters 

The Elbow method – a criterion for setting the proper number of clusters. It 

is about making the WCSS as low as possible, while still having a small number of 

clusters to reason about.  

 

 

4.2 K-means clustering - pros and cons 

Pros Cons 

Simple to implement We need to pick K 

Computationally efficient Sensitive to initialization 

Widely used Sensitive to outliers 

Always yields a result Produces spherical solutions 

Pros and cons of the K-means clustering 

 

 

4.3 Standardization 

The aim of standardization is to reduce the weight of higher numbers and 

increase that of lower ones. If we don’t standardize, the range of the values serves 

as weights for each variable, and we are not taking advantage of the size data 

whatsoever. Therefore, it is a good practice to standardize the data before 

clustering.  

When we should not standardize - as standardization is trying to put all 

variables on equal footing, in some cases, we don’t need to do that. If we know that 



   

 

one variable is inherently more important than another, then standardization 

shouldn’t be used. 

 

 

4.4 Relationship between clustering and regression  

Classification Clustering 

Classification is a typical example of 

supervised learning 

Cluster analysis is a typical example of 

unsupervised learning 

It is used whenever we have input data 

and the desired correct outcomes 

(targets). We train our data to find the 

patterns in the inputs that lead to the 

targets 

It is used whenever we have input data 

but have no clue what the correct 

outcomes are 

With classification we need to know 

the correct class of each of the 

observations in our data, in order to 

apply the algorithm 

Clustering is about grouping data 

points together based on similarities 

among them and difference from 

others 

A typical example of classification is 

the logistic regression 

A typical example of clustering is the K-

means clustering 

 

          



   

 

Comparisson between classification and clustering 

 

 In classification, we use the targets (correct values) to adjust the model to 

get better outputs. In clustering, there is no feedback loop, therefore, the model 

simply finds the outputs it deems best. 

 

 

Section 5: Types of clustering 

 

          Flat     Hierarchical 

 

      Divisive                                        

Agglomerative 

Types of clustering 

Flat - with flat methods there is no hierarchy, but rather the number of 

clusters are chosen prior to clustering. Flat methods have been developed 

because hierarchical clustering is much slower and computationally expensive. 

Nowadays, flat methods are preferred because of the volume of data we typically 

try to cluster. 

Hierarchical - historically, hierarchical clustering was developed first. An 

example clustering with hierarchy is the taxonomy of the animal kingdom. It is 

superior to flat clustering in the fact that it explores (contains) all solutions. 



   

 

• Divisive (top-down) - with divisive clustering, we start from a 

situation where all observations are in the same cluster. Then, we 

split this big cluster into 2 smaller ones. Next, we continue with 3, 

4, 5, and so on, until each observation is its separate cluster. To 

find the best split, we must explore all possibilities at each step. 

• Agglomerative (bottom-up) - when it comes to 

agglomerative clustering, the approach is bottom up. To find the 

combination of observations into a cluster, we must explore all 

possibilities at each step.  

 

 

5.1 Dendrogram 

Pros: 

• Hierarchical clustering shows all the possible linkages between 

clusters 

• It’s easy to understand the data 

• No need to define the number of clusters (like with K-means) 

• There are many methods performing hierarchical clustering 

Cons: 

• The biggest con is scalability  

• It is computationally expensive – the more observations, the 

slower it gets 

 




