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Probability–the Science of Uncertainty
and Data

by Fabián Kozynski

Probability

Probability models and axioms

Definition (Sample space) A sample space Ω is the set of all
possible outcomes. The set’s elements must be mutually exclusive,
collectively exhaustive and at the right granularity.

Definition (Event) An event is a subset of the sample space.
Probability is assigned to events.

Definition (Probability axioms) A probability law P assigns
probabilities to events and satisfies the following axioms:

Nonnegativity P(A) ≥ 0 for all events A.

Normalization P(Ω) = 1.

(Countable) additivity For every sequence of events A1,A2, . . .

such that Ai ∩Aj = ∅: P(⋃
i
Ai) = ∑

i
P(Ai).

Corollaries (Consequences of the axioms)

• P(∅) = 0.

• For any finite collection of disjoint events A1, . . . ,An,

P(
n
⋃
i=1

Ai) =
n

∑
i=1
P(Ai).

• P(A) +P(Ac) = 1.

• P(A) ≤ 1.

• If A ⊂ B, then P(A) ≤ P(B).
• P(A ∪B) = P(A) +P(B) −P(A ∩B).
• P(A ∪B) ≤ P(A) +P(B).

Example (Discrete uniform law) Assume Ω is finite and consists
of n equally likely elements. Also, assume that A ⊂ Ω with k
elements. Then P(A) = k

n
.

Conditioning and Bayes’ rule

Definition (Conditional probability) Given that event B has
occurred and that P (B) > 0, the probability that A occurs is

P(A∣B) △=
P(A ∩B)
P(B)

.

Remark (Conditional probabilities properties) They are the same
as ordinary probabilities. Assuming P(B) > 0:

• P(A∣B) ≥ 0.

• P(Ω∣B) = 1

• P(B∣B) = 1.

• If A ∩C = ∅, P(A ∪C∣B) = P(A∣B) +P(C∣B).
Proposition (Multiplication rule)

P(A1∩A2∩⋯∩An) = P(A1)⋅P(A2∣A1)⋯P(An∣A1∩A2∩⋯∩An−1).

Theorem (Total probability theorem) Given a partition
{A1,A2, . . .} of the sample space, meaning that ⋃

i
Ai = Ω and the

events are disjoint, and for every event B, we have

P(B) = ∑
i

P(Ai)P(B∣Ai).

Theorem (Bayes’ rule) Given a partition {A1,A2, . . .} of the
sample space, meaning that ⋃

i
Ai = Ω and the events are disjoint,

and if P(Ai) > 0 for all i, then for every event B, the conditional
probabilities P(Ai∣B) can be obtained from the conditional
probabilities P(B∣Ai) and the initial probabilities P(Ai) as follows:

P(Ai∣B) =
P(Ai)P(B∣Ai)

∑j P(Aj)P(B∣Aj)
.

Independence

Definition (Independence of events) Two events are independent
if occurrence of one provides no information about the other. We
say that A and B are independent if

P(A ∩B) = P(A)P(B).

Equivalently, as long as P(A) > 0 and P(B) > 0,

P(B∣A) = P(B) P(A∣B) = P(A).

Remarks

• The definition of independence is symmetric with respect to
A and B.

• The product definition applies even if P(A) = 0 or P(B) = 0.

Corollary If A and B are independent, then A and Bc are
independent. Similarly for Ac and B, or for Ac and Bc.

Definition (Conditional independence) We say that A and B are
independent conditioned on C, where P(C) > 0, if

P(A ∩B∣C) = P(A∣C)P(B∣C).

Definition (Independence of a collection of events) We say that
events A1,A2, . . . ,An are independent if for every collection of
distinct indices i1, i2, . . . , ik, we have

P(Ai1 ∩ . . . ∩Aik) = P(Ai1) ⋅P(Ai2)⋯P(Aik).

Counting

This section deals with finite sets with uniform probability law. In
this case, to calculate P(A), we need to count the number of
elements in A and in Ω.
Remark (Basic counting principle) For a selection that can be
done in r stages, with ni choices at each stage i, the number of
possible selections is n1 ⋅ n2⋯nr.
Definition (Permutations) The number of permutations
(orderings) of n different elements is

n! = 1 ⋅ 2 ⋅ 3⋯n.

Definition (Combinations) Given a set of n elements, the number
of subsets with exactly k elements is

(
n

k
) =

n!

k!(n − k)!
.

Definition (Partitions) We are given an n−element set and
nonnegative integers n1, n2, . . . , nr, whose sum is equal to n. The
number of partitions of the set into r disjoint subsets, with the ith

subset containing exactly ni elements, is equal to

(
n

n1, . . . , nr
) =

n!

n1!n2!⋯nr!
.

Remark This is the same as counting how to assign n distinct
elements to r people, giving each person i exactly ni elements.

Discrete random variables

Probability mass function and expectation

Definition (Random variable) A random variable X is a function
of the sample space Ω into the real numbers (or Rn). Its range can
be discrete or continuous.

Definition (Probability mass funtion (PMF)) The probability law
of a discrete random variable X is called its PMF. It is defined as

pX(x) = P(X = x) = P ({ω ∈ Ω ∶ X(ω) = x}) .

Properties

pX(x) ≥ 0, ∀x.

∑x pX(x) = 1.

Example (Bernoulli random variable) A Bernoulli random
variable X with parameter 0 ≤ p ≤ 1 (X ∼ Ber(p)) takes the
following values:

X =
⎧⎪⎪⎨⎪⎪⎩

1 w.p. p,

0 w.p. 1 − p.

An indicator random variable of an event (IA = 1 if A occurs) is an
example of a Bernoulli random variable.

Example (Discrete uniform random variable) A Discrete uniform
random variable X between a and b with a ≤ b (X ∼ Uni[a, b])
takes any of the values in {a, a + 1, . . . , b} with probability 1

b−a+1
.

Example (Binomial random variable) A Binomial random
variable X with parameters n (natural number) and 0 ≤ p ≤ 1
(X ∼ Bin(n, p)) takes values in the set {0,1, . . . , n} with
probabilities pX(i) = (n

i
)pi(1 − p)n−i.

It represents the number of successes in n independent trials where
each trial has a probability of success p. Therefore, it can also be
seen as the sum of n independent Bernoulli random variables, each
with parameter p.

Example (Geometric random variable) A Geometric random
variable X with parameter 0 ≤ p ≤ 1 (X ∼ Geo(p)) takes values in
the set {1,2, . . .} with probabilities pX(i) = (1 − p)i−1p.
It represents the number of independent trials until (and including)
the first success, when the probability of success in each trial is p.

Definition (Expectation/mean of a random variable) The
expectation of a discrete random variable is defined as

E[X] △= ∑
x

xpX(x).

assuming ∑x ∣x∣pX(x) < ∞.

Properties (Properties of expectation)

• If X ≥ 0 then E[X] ≥ 0.

• If a ≤ X ≤ b then a ≤ E[X] ≤ b.

• If X = c then E[X] = c.
Example Expected value of know r.v.

• If X ∼ Ber(p) then E[X] = p.

• If X = IA then E[X] = P(A).

• If X ∼ Uni[a, b] then E[X] = a+b
2

.

• If X ∼ Bin(n, p) then E[X] = np.

• If X ∼ Geo(p) then E[X] = 1
p

.



Theorem (Expected value rule) Given a random variable X and a
function g ∶ R→ R, we construct the random variable Y = g(X).
Then

∑
y

ypY (y) = E[Y ] = E [g(X)] = ∑
x

g(x)pX(x).

Remark (PMF of Y = g(X)) The PMF of Y = g(X) is
pY (y) = ∑

x∶g(x)=y
pX(x).

Remark In general g (E[X]) ≠ E [g(X)]. They are equal if
g(x) = ax + b.

Variance, conditioning on an event, multiple r.v.

Definition (Variance of a random variable) Given a random
variable X with µ = E[X], its variance is a measure of the spread
of the random variable and is defined as

Var(X) △= E [(X − µ)2] = ∑
x

(x − µ)2pX(x).

Definition (Standard deviation)

σX =
√

Var(X).

Properties (Properties of the variance)

• Var(aX) = a2 Var(X), for all a ∈ R.

• Var(X + b) = Var(X), for all b ∈ R.

• Var(aX + b) = a2 Var(X).

• Var(X) = E[X2] − (E[X])2.

Example (Variance of known r.v.)

• If X ∼ Ber(p), then Var(X) = p(1 − p).

• If X ∼ Uni[a, b], then Var(X) = (b−a)(b−a+2)
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.

• If X ∼ Bin(n, p), then Var(X) = np(1 − p).

• If X ∼ Geo(p), then Var(X) = 1−p
p2

Proposition (Conditional PMF and expectation, given an event)
Given the event A, with P(A) > 0, we have the following

• pX∣A(x) = P(X = x∣A).
• If A is a subset of the range of X, then:

pX∣A(x) △= pX∣{X∈A}(x) =
⎧⎪⎪⎨⎪⎪⎩

1
P(A)

pX(x), if x ∈ A,
0, otherwise.

• ∑x pX∣A(x) = 1.

• E[X ∣A] = ∑x xpX∣A(x).
• E [g(X)∣A] = ∑x g(x)pX∣A(x).

Proposition (Total expectation rule) Given a partition of disjoint
events A1, . . . ,An such that ∑iP(Ai) = 1, and P(Ai) > 0,

E[X] = P(A1)E[X ∣A1] + ⋯ +P(An)E[X ∣An].

Definition (Memorylessness of the geometric random variable)
When we condition a geometric random variable X on the event
X > n we have memorylessness, meaning that the “remaining time”
X −n, given that X > n, is also geometric with the same parameter.
Formally,

pX−n∣X>n(i) = pX(i).
Definition (Joint PMF) The joint PMF of random variables
X1,X2, . . . ,Xn is
pX1,X2,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn).

Properties (Properties of joint PMF)

• ∑
x1

⋯ ∑
xn
pX1,...,Xn(x1, . . . , xn) = 1.

• pX1
(x1) = ∑

x2

⋯ ∑
xn
pX1,...,Xn(x1, x2, . . . , xn).

• pX2,...,Xn(x2, . . . , xn) = ∑
x1

pX1,X2,...,Xn(x1, x2, . . . , xn).

Definition (Functions of multiple r.v.) If Z = g(X1, . . . ,Xn),
where g ∶ Rn → R, then pZ(z) = P (g(X1, . . . ,Xn) = z).
Proposition (Expected value rule for multiple r.v.) Given
g ∶ Rn → R,

E [g(X1, . . . ,Xn)] = ∑
x1,...,xn

g(x1, . . . , xn)pX1,...,Xn(x1, . . . , xn).

Properties (Linearity of expectations)

• E[aX + b] = aE[X] + b.
• E[X1 +⋯ +Xn] = E[X1] + ⋯ +E[Xn].

Conditioning on a random variable, independence

Definition (Conditional PMF given another random variable)
Given discrete random variables X,Y and y such that pY (y) > 0
we define

pX∣Y (x∣y) △=
pX,Y (x, y)
pY (y)

.

Proposition (Multiplication rule) Given jointly discrete random
variables X,Y , and whenever the conditional probabilities are
defined,

pX,Y (x, y) = pX(x)pY ∣X(y∣x) = pY (y)pX∣Y (x∣y).

Definition (Conditional expectation) Given discrete random
variables X,Y and y such that pY (y) > 0 we define

E[X ∣Y = y] = ∑
x

xpX∣Y (x∣y).

Additionally we have

E [g(X)∣Y = y] = ∑
x

g(x)pX∣Y (x∣y).

Theorem (Total probability and expectation theorems)
If pY (y) > 0, then

pX(x) = ∑
y

pY (y)pX∣Y (x∣y),

E[X] = ∑
y

pY (y)E[X ∣Y = y].

Definition (Independence of a random variable and an event) A
discrete random variable X and an event A are independent if
P(X = x and A) = pX(x)P(A), for all x.

Definition (Independence of two random variables) Two discrete
random variables X and Y are independent if
pX,Y (x, y) = pX(x)pY (y) for all x, y.

Remark (Independence of a collection of random variables) A
collection X1,X2, . . . ,Xn of random variables are independent if

pX1,...,Xn(x1, . . . , xn) = pX1
(x1)⋯pXn(xn), ∀x1, . . . , xn.

Remark (Independence and expectation) In general,
E [g(X,Y )] ≠ g (E[X],E[Y ]). An exception is for linear functions:
E[aX + bY ] = aE[X] + bE[Y ].

Proposition (Expectation of product of independent r.v.) If X
and Y are discrete independent random variables,

E[XY ] = E[X]E[Y ].

Remark If X and Y are independent,
E [g(X)h(Y )] = E [g(X)]E [h(Y )].
Proposition (Variance of sum of independent random variables)
IF X and Y are discrete independent random variables,

Var(X + Y ) = Var(X) +Var(Y ).

Continuous random variables

PDF, Expectation, Variance, CDF

Definition (Probability density function (PDF)) A probability
density function of a r.v. X is a non-negative real valued function
fX that satisfies the following

•
∞

∫
−∞

fX(x)dx = 1.

• P(a ≤ X ≤ b) =
b

∫
a
fX(x)dx for some random variable X.

Definition (Continuous random variable) A random variable X is
continuous if its probability law can be described by a PDF fX .

Remark Continuous random variables satisfy:

• For small δ > 0, P(a ≤ X ≤ a + δ) ≈ fX(a)δ.

• P(X = a) = 0, ∀a ∈ R.

Definition (Expectation of a continuous random variable) The
expectation of a continuous random variable is

E[X] △= ∫
∞

−∞
xfX(x)dx.

assuming
∞

∫
−∞

∣x∣fX(x)dx < ∞.

Properties (Properties of expectation)

• If X ≥ 0 then E[X] ≥ 0.

• If a ≤ X ≤ b then a ≤ E[X] ≤ b.

• E [g(X)] =
∞

∫
−∞

g(x)fX(x)dx.

• E[aX + b] = aE[X] + b.
Definition (Variance of a continuous random variable) Given a
continuous random variable X with µ = E[X], its variance is

Var(X) = E [(X − µ)2] = ∫
∞

−∞
(x − µ)2fX(x)dx.

It has the same properties as the variance of a discrete random
variable.

Example (Uniform continuous random variable) A Uniform
continuous random variable X between a and b, with a < b,
(X ∼ Uni(a, b)) has PDF

fX(x) =
⎧⎪⎪⎨⎪⎪⎩

1
b−a

, if a < x < b,
0, otherwise.

We have E[X] = a+b
2

and Var(X) = (b−a)
2

12
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Example (Exponential random variable) An Exponential random
variable X with parameter λ > 0 (X ∼ Exp(λ)) has PDF

fX(x) =
⎧⎪⎪⎨⎪⎪⎩

λe−λx, if x ≥ 0,

0, otherwise.

We have E[X] = 1
λ

and Var(X) = 1
λ2 .

Definition (Cumulative Distribution Function (CDF)) The CDF
of a random variable X is FX(x) = P(X ≤ x).
In particular, for a continuous random variable, we have

FX(x) =
x

∫
−∞

fX(x)dx,

fX(x) =
dFX(x)

dx
.

Properties (Properties of CDF)

• If y ≥ x, then FX(y) ≥ FX(x).

• lim
x→−∞

FX(x) = 0.

• lim
x→∞

FX(x) = 1.

Definition (Normal/Gaussian random variable) A Normal random
variable X with mean µ and variance σ2 > 0 (X ∼ N(µ,σ2)) has
PDF

fX(x) =
1

√
2πσ2

e
− 1

2σ2 (x−µ)
2

.

We have E[X] = µ and Var(X) = σ2.

Remark (Standard Normal) The standard Normal is N(0,1).
Proposition (Linearity of Gaussians) Given X ∼ N(µ,σ2), and if
a ≠ 0, then aX + b ∼ N(aµ + b, a2σ2).
Using this Y = X−µ

σ
is a standard gaussian.

Conditioning on an event, and multiple continuous r.v.

Definition (Conditional PDF given an event) Given a continuous
random variable X and event A with P (A) > 0, we define the
conditional PDF as the function that satisfies

P(X ∈ B∣A) = ∫
B
fX∣A(x)dx.

Definition (Conditional PDF given X ∈ A) Given a continuous
random variable X and an A ⊂ R, with P (A) > 0:

fX∣X∈A(x) =
⎧⎪⎪⎨⎪⎪⎩

1
P(A)

fX(x), x ∈ A,
0, x /∈ A.

Definition (Conditional expectation) Given a continuous random
variable X and an event A, with P (A) > 0:

E[X ∣A] = ∫
∞

−∞
fX∣A(x)dx.

Definition (Memorylessness of the exponential random variable)
When we condition an exponential random variable X on the event
X > t we have memorylessness, meaning that the “remaining time”
X − t given that X > t is also geometric with the same parameter
i.e.,

P(X − t > x∣X > t) = P(X > x).

Theorem (Total probability and expectation theorems) Given a
partition of the space into disjoint events A1,A2, . . . ,An such that

∑iP(Ai) = 1 we have the following:

FX(x) = P(A1)FX∣A1
(x) + ⋯ +P(An)FX∣An(x),

fX(x) = P(A1)fX∣A1
(x) + ⋯ +P(An)fX∣An(x),

E[X] = P(A1)E[X ∣A1] + ⋯ +P(An)E[X ∣An].

Definition (Jointly continuous random variables) A pair
(collection) of random variables is jointly continuous if there exists
a joint PDF fX,Y that describes them, that is, for every set B ⊂ Rn

P ((X,Y ) ∈ B) = ∬
B
fX,Y (x, y)dxdy.

Properties (Properties of joint PDFs)

• fX(x) =
∞

∫
−∞

fX,Y (x, y)dy.

• FX,Y (x, y) = P(X ≤ x,Y ≤ y) =
x

∫
−∞

[
y

∫
−∞

fX,Y (u, v)dv]du.

• fX,Y (x) = ∂2FX,Y (x,y)

∂x ∂y
.

Example (Uniform joint PDF on a set S) Let S ⊂ R2 with area
s > 0, then the random variable (X,Y ) is uniform over S if it has
PDF

fX,Y (x, y) =
⎧⎪⎪⎨⎪⎪⎩

1
s
, (x, y) ∈ S,

0, (x, y) /∈ S.

Conditioning on a random variable, independence, Bayes’ rule

Definition (Conditional PDF given another random variable)
Given jointly continuous random variables X,Y and a value y such
that fY (y) > 0, we define the conditional PDF as

fX∣Y (x∣y) △=
fX,Y (x, y)
fY (y)

.

Additionally we define P(X ∈ A∣Y = y) ∫A fX∣Y (x∣y)dx.

Proposition (Multiplication rule) Given jointly continuous
random variables X,Y , whenever possible we have

fX,Y (x, y) = fX(x)fY ∣X(y∣x) = fY (y)fX∣Y (x∣y).

Definition (Conditional expectation) Given jointly continuous
random variables X,Y , and y such that fY (y) > 0, we define the
conditional expected value as

E[X ∣Y = y] = ∫
∞

−∞
xfX∣Y (x∣y)dx.

Additionally we have

E [g(X)∣Y = y] = ∫
∞

−∞
g(x)fX∣Y (x∣y)dx.

Theorem (Total probability and total expectation theorems)

fX(x) = ∫
∞

−∞
fY (y)fX∣Y (x∣y)dy,

E[X] = ∫
∞

−∞
fY (y)E[X ∣Y = y]dy.

Definition (Independence) Jointly continuous random variables
X,Y are independent if fX,Y (x, y) = fX(x)fY (y) for all x, y.

Proposition (Expectation of product of independent r.v.) If X
and Y are independent continuous random variables,

E[XY ] = E[X]E[Y ].

Remark If X and Y are independent,
E [g(X)h(Y )] = E [g(X)]E [h(Y )].

Proposition (Variance of sum of independent random variables)
If X and Y are independent continuous random variables,

Var(X + Y ) = Var(X) +Var(Y ).

Proposition (Bayes’ rule summary)

• For X,Y discrete: pX∣Y (x∣y) =
pX(x)pY ∣X(y∣x)

pY (y)
.

• For X,Y continuous: fX∣Y (x∣y) =
fX(x)fY ∣X(y∣x)

fY (y)
.

• For X discrete, Y continuous: pX∣Y (x∣y) =
pX(x)fY ∣X(y∣x)

fY (y)
.

• For X continuous, Y discrete: fX∣Y (x∣y) =
fX(x)pY ∣X(y∣x)

pY (y)
.

Derived distributions

Proposition (Discrete case) Given a discrete random variable X
and a function g, the r.v. Y = g(X) has PMF

pY (y) = ∑
x∶g(x)=y

pX(x).

Remark (Linear function of discrete random variable) If

g(x) = ax + b, then pY (y) = pX ( y−b
a

).

Proposition (Linear function of continuous r.v.) Given a
continuous random variable X and Y = aX + b, with a ≠ 0, we have

fY (y) =
1

∣a∣
fX (

y − b
a

) .

Corollary (Linear function of normal r.v.) If X ∼ N(µ,σ2) and
Y = aX + b, with a ≠ 0, then Y ∼ N(aµ + b, a2σ2).

Example (General function of a continuous r.v.) If X is a
continuous random variable and g is any function, to obtain the
pdf of Y = g(X) we follow the two-step procedure:

1. Find the CDF of Y : FY (y) = P(Y ≤ y) = P (g(X) ≤ y).

2. Differentiate the CDF of Y to obtain the PDF:
fY (y) = dFY (y)

dy
.

Proposition (General formula for monotonic g) Let X be a
continuous random variable and g a function that is monotonic
wherever fX(x) > 0. The PDF of Y = g(X) is given by

fY (y) = fX (h(y)) ∣
dh

dy
(y)∣ .

where h = g−1 in the interval where g is monotonic.



Sums of independent r.v., covariance and correlation

Proposition (Discrete case) Let X,Y be discrete independent
random variables and Z = X + Y , then the PMF of Z is

pZ(z) = ∑
x

pX(x)pY (z − x).

Proposition (Continuous case) Let X,Y be continuous
independent random variables and Z = X +Y , then the PDF of Z is

fZ(z) = ∫
∞

−∞
fX(x)fY (z − x)dx.

Proposition (Sum of independent normal r.v.) Let X ∼ N(µx, σ2
x)

and Y ∼ N(µy , σ2
y) independent. Then

Z = X + Y ∼ N(µx + µy , σ2
x + σ2

y).
Definition (Covariance) We define the covariance of random
variables X,Y as

Cov(X,Y ) △= E [(X −E[X]) (Y −E[Y ])] .

Properties (Properties of covariance)

• If X,Y are independent, then Cov(X,Y ) = 0.

• Cov(X,X) = Var(X).
• Cov(aX + b, Y ) = aCov(X,Y ).
• Cov(X,Y +Z) = Cov(X,Y ) +Cov(X,Z).
• Cov(X,Y ) = E[XY ] −E[X]E[Y ].

Proposition (Variance of a sum of r.v.)

Var(X1 +⋯ +Xn) = ∑
i

Var(Xi) + ∑
i≠j

Cov(Xi,Xj).

Definition (Correlation coefficient) We define the correlation
coefficient of random variables X,Y , with σX , σY > 0, as

ρ(X,Y ) △=
Cov(X,Y )
σXσY

.

Properties (Properties of the correlation coefficient)

• −1 ≤ ρ ≤ 1.

• If X,Y are independent, then ρ = 0.

• ∣ρ∣ = 1 if and only if X −E[X] = c (Y −E[Y ]).
• ρ(aX + b, Y ) = sign(a)ρ(X,Y ).

Conditional expectation and variance, sum of
random number of r.v.

Definition (Conditional expectation as a random variable) Given
random variables X,Y the conditional expectation E[X ∣Y ] is the
random variable that takes the value E[X ∣Y = y] whenever Y = y.

Theorem (Law of iterated expectations)

E [E[X ∣Y ]] = E[X].

Definition (Conditional variance as a random variable) Given
random variables X,Y the conditional variance Var(X ∣Y ) is the
random variable that takes the value Var(X ∣Y = y) whenever
Y = y.

Theorem (Law of total variance)

Var(X) = E [Var(X ∣Y )] +Var (E[X ∣Y ]) .

Proposition (Sum of a random number of independent r.v.)

Let N be a nonnegative integer random variable.
Let X,X1,X2, . . . ,XN be i.i.d. random variables.
Let Y = ∑iXi. Then

E[Y ] = E[N]E[X],

Var(Y ) = E[N]Var(X) + (E[X])2 Var(N).

Convergence of random variables

Inequalities, convergence, and the Weak Law of
Large Numbers

Theorem (Markov inequality) Given a random variable X ≥ 0 and,
for every a > 0 we have

P(X ≥ a) ≤
E[X]
a

.

Theorem (Chebyshev inequality) Given a random variable X with
E[X] = µ and Var(X) = σ2, for every ε > 0 we have

P (∣X − µ∣ ≥ ε) ≤
σ2

ε2
.

Theorem (Weak Law of Large Number (WLLN)) Given a
sequence of i.i.d. random variables {X1,X2, . . .} with E[Xi] = µ
and Var(Xi) = σ2, we define

Mn =
1

n

n

∑
i=1

Xi,

for every ε > 0 we have

lim
n→∞

P (∣Mn − µ∣ ≥ ε) = 0.

Definition (Convergence in probability) A sequence of random
variables {Yi} converges in probability to the random variable Y if

lim
n→∞

P (∣Yi − Y ∣ ≥ ε) = 0,

for every ε > 0.

Properties (Properties of convergence in probability) If Xn → a
and Yn → b in probability, then

• Xn + Yn → a + b.
• If g is a continuous function, then g(Xn) → g(a).
• E[Xn] does not always converge to a.

The Central Limit Theorem

Theorem (Central Limit Theorem (CLT)) Given a sequence of
independent random variables {X1,X2, . . .} with E[Xi] = µ and
Var(Xi) = σ2, we define

Zn =
1

σ
√
n

n

∑
i=1

(Xi − µ).

Then, for every z, we have

lim
n→∞

P(Zn ≤ z) = P(Z ≤ z),

where Z ∼ N(0,1).
Corollary (Normal approximation of a binomial) Let
X ∼ Bin(n, p) with n large. Then Sn can be approximated by
Z ∼ N (np,np(1 − p)).
Remark (De Moivre-Laplace 1/2 approximation) Let X ∼ Bin,
then P(X = i) = P (i − 1

2
≤ X ≤ i + 1

2
) and we can use the CLT to

approximate the PMF of X.
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1 Supervised Learning

1.1 Introduction to Supervised Learning

Given a set of data points {x(1), ..., x(m)} associated to a set of outcomes {y(1), ..., y(m)}, we
want to build a classifier that learns how to predict y from x.
r Type of prediction – The different types of predictive models are summed up in the table
below:

Regression Classifier

Outcome Continuous Class

Examples Linear regression Logistic regression, SVM, Naive Bayes

r Type of model – The different models are summed up in the table below:

Discriminative model Generative model

Goal Directly estimate P (y|x) Estimate P (x|y) to deduce P (y|x)

What’s learned Decision boundary Probability distributions of the data

Illustration

Examples Regressions, SVMs GDA, Naive Bayes

1.2 Notations and general concepts

r Hypothesis – The hypothesis is noted hθ and is the model that we choose. For a given input
data x(i), the model prediction output is hθ(x(i)).

r Loss function – A loss function is a function L : (z,y) ∈ R× Y 7−→ L(z,y) ∈ R that takes as
inputs the predicted value z corresponding to the real data value y and outputs how different
they are. The common loss functions are summed up in the table below:

Least squared Logistic Hinge Cross-entropy

1
2

(y − z)2 log(1 + exp(−yz)) max(0,1− yz) −
[

y log(z) + (1 − y) log(1 − z)
]

Linear regression Logistic regression SVM Neural Network

r Cost function – The cost function J is commonly used to assess the performance of a model,
and is defined with the loss function L as follows:

J(θ) =
m∑
i=1

L(hθ(x(i)), y(i))

r Gradient descent – By noting α ∈ R the learning rate, the update rule for gradient descent
is expressed with the learning rate and the cost function J as follows:

θ ←− θ − α∇J(θ)

Remark: Stochastic gradient descent (SGD) is updating the parameter based on each training
example, and batch gradient descent is on a batch of training examples.

r Likelihood – The likelihood of a model L(θ) given parameters θ is used to find the optimal
parameters θ through maximizing the likelihood. In practice, we use the log-likelihood `(θ) =
log(L(θ)) which is easier to optimize. We have:

θopt = arg max
θ

L(θ)

r Newton’s algorithm – The Newton’s algorithm is a numerical method that finds θ such
that `′(θ) = 0. Its update rule is as follows:

θ ← θ −
`′(θ)
`′′(θ)

Remark: the multidimensional generalization, also known as the Newton-Raphson method, has
the following update rule:

θ ← θ −
(
∇2
θ`(θ)

)−1
∇θ`(θ)

1.3 Linear models

1.3.1 Linear regression

We assume here that y|x; θ ∼ N (µ,σ2)
r Normal equations – By noting X the matrix design, the value of θ that minimizes the cost
function is a closed-form solution such that:

θ = (XTX)−1XT y
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r LMS algorithm – By noting α the learning rate, the update rule of the Least Mean Squares
(LMS) algorithm for a training set of m data points, which is also known as the Widrow-Hoff
learning rule, is as follows:

∀j, θj ← θj + α

m∑
i=1

[
y(i) − hθ(x(i))

]
x

(i)
j

Remark: the update rule is a particular case of the gradient ascent.

r LWR – Locally Weighted Regression, also known as LWR, is a variant of linear regression that
weights each training example in its cost function by w(i)(x), which is defined with parameter
τ ∈ R as:

w(i)(x) = exp
(
−

(x(i) − x)2

2τ2

)

1.3.2 Classification and logistic regression

r Sigmoid function – The sigmoid function g, also known as the logistic function, is defined
as follows:

∀z ∈ R, g(z) = 1
1 + e−z

∈]0,1[

r Logistic regression – We assume here that y|x; θ ∼ Bernoulli(φ). We have the following
form:

φ = p(y = 1|x; θ) = 1
1 + exp(−θT x)

= g(θT x)

Remark: there is no closed form solution for the case of logistic regressions.

r Softmax regression – A softmax regression, also called a multiclass logistic regression, is
used to generalize logistic regression when there are more than 2 outcome classes. By convention,
we set θK = 0, which makes the Bernoulli parameter φi of each class i equal to:

φi =
exp(θTi x)
K∑
j=1

exp(θTj x)

1.3.3 Generalized Linear Models

r Exponential family – A class of distributions is said to be in the exponential family if it can
be written in terms of a natural parameter, also called the canonical parameter or link function,
η, a sufficient statistic T (y) and a log-partition function a(η) as follows:

p(y; η) = b(y) exp(ηT (y)− a(η))

Remark: we will often have T (y) = y. Also, exp(−a(η)) can be seen as a normalization param-
eter that will make sure that the probabilities sum to one.
Here are the most common exponential distributions summed up in the following table:

Distribution η T (y) a(η) b(y)

Bernoulli log
(

φ
1−φ

)
y log(1 + exp(η)) 1

Gaussian µ y η2

2
1√
2π

exp
(
− y

2

2

)
Poisson log(λ) y eη

1
y!

Geometric log(1− φ) y log
(

eη

1−eη
)

1

r Assumptions of GLMs – Generalized Linear Models (GLM) aim at predicting a random
variable y as a function fo x ∈ Rn+1 and rely on the following 3 assumptions:

(1) y|x; θ ∼ ExpFamily(η) (2) hθ(x) = E[y|x; θ] (3) η = θT x

Remark: ordinary least squares and logistic regression are special cases of generalized linear
models.

1.4 Support Vector Machines

The goal of support vector machines is to find the line that maximizes the minimum distance to
the line.
r Optimal margin classifier – The optimal margin classifier h is such that:

h(x) = sign(wT x− b)

where (w, b) ∈ Rn × R is the solution of the following optimization problem:

min 1
2
||w||2 such that y(i)(wT x(i) − b) > 1

Remark: the line is defined as wT x− b = 0 .

r Hinge loss – The hinge loss is used in the setting of SVMs and is defined as follows:

L(z,y) = [1− yz]+ = max(0,1− yz)
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r Kernel – Given a feature mapping φ, we define the kernel K to be defined as:

K(x,z) = φ(x)Tφ(z)

In practice, the kernel K defined by K(x,z) = exp
(
− ||x−z||

2

2σ2

)
is called the Gaussian kernel

and is commonly used.

Remark: we say that we use the "kernel trick" to compute the cost function using the kernel
because we actually don’t need to know the explicit mapping φ, which is often very complicated.
Instead, only the values K(x,z) are needed.

r Lagrangian – We define the Lagrangian L(w,b) as follows:

L(w,b) = f(w) +
l∑
i=1

βihi(w)

Remark: the coefficients βi are called the Lagrange multipliers.

1.5 Generative Learning

A generative model first tries to learn how the data is generated by estimating P (x|y), which
we can then use to estimate P (y|x) by using Bayes’ rule.

1.5.1 Gaussian Discriminant Analysis

r Setting – The Gaussian Discriminant Analysis assumes that y and x|y = 0 and x|y = 1 are
such that:

y ∼ Bernoulli(φ)

x|y = 0 ∼ N (µ0,Σ) and x|y = 1 ∼ N (µ1,Σ)

r Estimation – The following table sums up the estimates that we find when maximizing the
likelihood:

φ̂ µ̂j (j = 0,1) Σ̂

1
m

m∑
i=1

1{y(i)=1}

∑m

i=1 1{y(i)=j}x
(i)∑m

i=1 1{y(i)=j}

1
m

m∑
i=1

(x(i) − µy(i) )(x(i) − µy(i) )T

1.5.2 Naive Bayes

r Assumption – The Naive Bayes model supposes that the features of each data point are all
independent:

P (x|y) = P (x1,x2,...|y) = P (x1|y)P (x2|y)... =
n∏
i=1

P (xi|y)

r Solutions – Maximizing the log-likelihood gives the following solutions, with k ∈ {0,1},
l ∈ [[1,L]]

P (y = k) = 1
m
×#{j|y(j) = k} and P (xi = l|y = k) =

#{j|y(j) = k and x(j)
i = l}

#{j|y(j) = k}

Remark: Naive Bayes is widely used for text classification and spam detection.

1.6 Tree-based and ensemble methods

These methods can be used for both regression and classification problems.
r CART – Classification and Regression Trees (CART), commonly known as decision trees,
can be represented as binary trees. They have the advantage to be very interpretable.

r Random forest – It is a tree-based technique that uses a high number of decision trees
built out of randomly selected sets of features. Contrary to the simple decision tree, it is highly
uninterpretable but its generally good performance makes it a popular algorithm.
Remark: random forests are a type of ensemble methods.

r Boosting – The idea of boosting methods is to combine several weak learners to form a
stronger one. The main ones are summed up in the table below:

Adaptive boosting Gradient boosting

- High weights are put on errors to - Weak learners trained
improve at the next boosting step on remaining errors
- Known as Adaboost

1.7 Other non-parametric approaches

r k-nearest neighbors – The k-nearest neighbors algorithm, commonly known as k-NN, is a
non-parametric approach where the response of a data point is determined by the nature of its
k neighbors from the training set. It can be used in both classification and regression settings.
Remark: The higher the parameter k, the higher the bias, and the lower the parameter k, the
higher the variance.
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1.8 Learning Theory

r Union bound – Let A1, ..., Ak be k events. We have:

P (A1 ∪ ... ∪Ak) 6 P (A1) + ...+ P (Ak)

r Hoeffding inequality – Let Z1, .., Zm be m iid variables drawn from a Bernoulli distribution
of parameter φ. Let φ̂ be their sample mean and γ > 0 fixed. We have:

P (|φ− φ̂| > γ) 6 2 exp(−2γ2m)

Remark: this inequality is also known as the Chernoff bound.

r Training error – For a given classifier h, we define the training error ε̂(h), also known as the
empirical risk or empirical error, to be as follows:

ε̂(h) = 1
m

m∑
i=1

1{h(x(i))6=y(i)}

r Probably Approximately Correct (PAC) – PAC is a framework under which numerous
results on learning theory were proved, and has the following set of assumptions:

• the training and testing sets follow the same distribution

• the training examples are drawn independently

r Shattering – Given a set S = {x(1),...,x(d)}, and a set of classifiers H, we say that H shatters
S if for any set of labels {y(1), ..., y(d)}, we have:

∃h ∈ H, ∀i ∈ [[1,d]], h(x(i)) = y(i)

r Upper bound theorem – Let H be a finite hypothesis class such that |H| = k and let δ and
the sample size m be fixed. Then, with probability of at least 1− δ, we have:

ε(̂h) 6
(

min
h∈H

ε(h)
)

+ 2

√
1

2m
log
(2k
δ

)
r VC dimension – The Vapnik-Chervonenkis (VC) dimension of a given infinite hypothesis
class H, noted VC(H) is the size of the largest set that is shattered by H.
Remark: the VC dimension of H = {set of linear classifiers in 2 dimensions} is 3.

r Theorem (Vapnik) – Let H be given, with VC(H) = d and m the number of training
examples. With probability at least 1− δ, we have:

ε(̂h) 6
(

min
h∈H

ε(h)
)

+O

(√
d

m
log
(
m

d

)
+ 1
m

log
(1
δ

))
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2 Unsupervised Learning

2.1 Introduction to Unsupervised Learning

r Motivation – The goal of unsupervised learning is to find hidden patterns in unlabeled data
{x(1),...,x(m)}.

r Jensen’s inequality – Let f be a convex function and X a random variable. We have the
following inequality:

E[f(X)] > f(E[X])

2.2 Clustering

2.2.1 Expectation-Maximization

r Latent variables – Latent variables are hidden/unobserved variables that make estimation
problems difficult, and are often denoted z. Here are the most common settings where there are
latent variables:

Setting Latent variable z x|z Comments

Mixture of k Gaussians Multinomial(φ) N (µj ,Σj) µj ∈ Rn, φ ∈ Rk

Factor analysis N (0,I) N (µ+ Λz,ψ) µj ∈ Rn

r Algorithm – The Expectation-Maximization (EM) algorithm gives an efficient method at
estimating the parameter θ through maximum likelihood estimation by repeatedly constructing
a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

• E-step: Evaluate the posterior probability Qi(z(i)) that each data point x(i) came from
a particular cluster z(i) as follows:

Qi(z(i)) = P (z(i)|x(i); θ)

• M-step: Use the posterior probabilities Qi(z(i)) as cluster specific weights on data points
x(i) to separately re-estimate each cluster model as follows:

θi = argmax
θ

∑
i

ˆ
z(i)

Qi(z(i)) log
(
P (x(i),z(i); θ)
Qi(z(i))

)
dz(i)

2.2.2 k-means clustering

We note c(i) the cluster of data point i and µj the center of cluster j.
r Algorithm – After randomly initializing the cluster centroids µ1,µ2,...,µk ∈ Rn, the k-means
algorithm repeats the following step until convergence:

c(i) = arg min
j

||x(i) − µj ||2 and µj =

m∑
i=1

1{c(i)=j}x
(i)

m∑
i=1

1{c(i)=j}

r Distortion function – In order to see if the algorithm converges, we look at the distortion
function defined as follows:

J(c,µ) =
m∑
i=1

||x(i) − µc(i) ||2

2.2.3 Hierarchical clustering

r Algorithm – It is a clustering algorithm with an agglomerative hierarchical approach that
build nested clusters in a successive manner.
r Types – There are different sorts of hierarchical clustering algorithms that aims at optimizing
different objective functions, which is summed up in the table below:

Ward linkage Average linkage Complete linkage

Minimize within cluster Minimize average distance Minimize maximum distance
distance between cluster pairs of between cluster pairs

2.2.4 Clustering assessment metrics

In an unsupervised learning setting, it is often hard to assess the performance of a model since
we don’t have the ground truth labels as was the case in the supervised learning setting.
r Silhouette coefficient – By noting a and b the mean distance between a sample and all
other points in the same class, and between a sample and all other points in the next nearest
cluster, the silhouette coefficient s for a single sample is defined as follows:

s = b− a
max(a,b)
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r Calinski-Harabaz index – By noting k the number of clusters, Bk and Wk the between
and within-clustering dispersion matrices respectively defined as

Bk =
k∑
j=1

nc(i) (µc(i) − µ)(µc(i) − µ)T , Wk =
m∑
i=1

(x(i) − µc(i) )(x(i) − µc(i) )T

the Calinski-Harabaz index s(k) indicates how well a clustering model defines its clusters, such
that the higher the score, the more dense and well separated the clusters are. It is defined as
follows:

s(k) = Tr(Bk)
Tr(Wk)

×
N − k
k − 1

2.3 Dimension reduction

2.3.1 Principal component analysis

It is a dimension reduction technique that finds the variance maximizing directions onto which
to project the data.
r Eigenvalue, eigenvector – Given a matrix A ∈ Rn×n, λ is said to be an eigenvalue of A if
there exists a vector z ∈ Rn\{0}, called eigenvector, such that we have:

Az = λz

r Spectral theorem – Let A ∈ Rn×n. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U ∈ Rn×n. By noting Λ = diag(λ1,...,λn), we have:

∃Λ diagonal, A = UΛUT

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of
matrix A.

r Algorithm – The Principal Component Analysis (PCA) procedure is a dimension reduction
technique that projects the data on k dimensions by maximizing the variance of the data as
follows:

• Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

x
(i)
j ←

x
(i)
j − µj
σj

where µj = 1
m

m∑
i=1

x
(i)
j and σ2

j = 1
m

m∑
i=1

(x(i)
j − µj)

2

• Step 2: Compute Σ = 1
m

m∑
i=1

x(i)x(i)T ∈ Rn×n, which is symmetric with real eigenvalues.

• Step 3: Compute u1, ..., uk ∈ Rn the k orthogonal principal eigenvectors of Σ, i.e. the
orthogonal eigenvectors of the k largest eigenvalues.

• Step 4: Project the data on spanR(u1,...,uk). This procedure maximizes the variance
among all k-dimensional spaces.

2.3.2 Independent component analysis

It is a technique meant to find the underlying generating sources.
r Assumptions – We assume that our data x has been generated by the n-dimensional source
vector s = (s1,...,sn), where si are independent random variables, via a mixing and non-singular
matrix A as follows:

x = As

The goal is to find the unmixing matrix W = A−1 by an update rule.

r Bell and Sejnowski ICA algorithm – This algorithm finds the unmixing matrix W by
following the steps below:

• Write the probability of x = As = W−1s as:

p(x) =
n∏
i=1

ps(wTi x) · |W |

• Write the log likelihood given our training data {x(i), i ∈ [[1,m]]} and by noting g the
sigmoid function as:

l(W ) =
m∑
i=1

(
n∑
j=1

log
(
g′(wTj x(i))

)
+ log |W |

)

Therefore, the stochastic gradient ascent learning rule is such that for each training example
x(i), we update W as follows:

W ←−W + α




1− 2g(wT1 x(i))
1− 2g(wT2 x(i))

...
1− 2g(wTn x(i))

x(i)T + (WT )−1


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3 Deep Learning

3.1 Neural Networks

Neural networks are a class of models that are built with layers. Commonly used types of neural
networks include convolutional and recurrent neural networks.

r Architecture – The vocabulary around neural networks architectures is described in the
figure below:

By noting i the ith layer of the network and j the jth hidden unit of the layer, we have:

z
[i]
j = w

[i]
j

T
x+ b

[i]
j

where we note w, b, z the weight, bias and output respectively.

r Activation function – Activation functions are used at the end of a hidden unit to introduce
non-linear complexities to the model. Here are the most common ones:

Sigmoid Tanh ReLU Leaky ReLU

g(z) = 1
1 + e−z

g(z) = ez − e−z

ez + e−z
g(z) = max(0,z) g(z) = max(εz,z)

with ε� 1

r Cross-entropy loss – In the context of neural networks, the cross-entropy loss L(z,y) is
commonly used and is defined as follows:

L(z,y) = −
[
y log(z) + (1− y) log(1− z)

]
r Learning rate – The learning rate, often noted η, indicates at which pace the weights get
updated. This can be fixed or adaptively changed. The current most popular method is called
Adam, which is a method that adapts the learning rate.

r Backpropagation – Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to weight w is computed using chain rule and is of the following form:

∂L(z,y)
∂w

= ∂L(z,y)
∂a

×
∂a

∂z
×
∂z

∂w

As a result, the weight is updated as follows:

w ←− w − η
∂L(z,y)
∂w

r Updating weights – In a neural network, weights are updated as follows:

• Step 1: Take a batch of training data.

• Step 2: Perform forward propagation to obtain the corresponding loss.

• Step 3: Backpropagate the loss to get the gradients.

• Step 4: Use the gradients to update the weights of the network.

r Dropout – Dropout is a technique meant at preventing overfitting the training data by
dropping out units in a neural network. In practice, neurons are either dropped with probability
p or kept with probability 1− p.

3.2 Convolutional Neural Networks

r Convolutional layer requirement – By noting W the input volume size, F the size of the
convolutional layer neurons, P the amount of zero padding, then the number of neurons N that
fit in a given volume is such that:

N = W − F + 2P
S

+ 1

r Batch normalization – It is a step of hyperparameter γ, β that normalizes the batch {xi}.
By noting µB , σ2

B the mean and variance of that we want to correct to the batch, it is done as
follows:

xi ←− γ
xi − µB√
σ2
B + ε

+ β

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.

3.3 Recurrent Neural Networks

r Types of gates – Here are the different types of gates that we encounter in a typical recurrent
neural network:

Input gate Forget gate Output gate Gate

Write to cell or not? Erase a cell or not? Reveal a cell or not? How much writing?

r LSTM – A long short-term memory (LSTM) network is a type of RNN model that avoids
the vanishing gradient problem by adding ’forget’ gates.
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3.4 Reinforcement Learning and Control

The goal of reinforcement learning is for an agent to learn how to evolve in an environment.

r Markov decision processes – AMarkov decision process (MDP) is a 5-tuple (S,A,{Psa},γ,R)
where:

• S is the set of states

• A is the set of actions

• {Psa} are the state transition probabilities for s ∈ S and a ∈ A

• γ ∈ [0,1[ is the discount factor

• R : S × A −→ R or R : S −→ R is the reward function that the algorithm wants to
maximize

r Policy – A policy π is a function π : S −→ A that maps states to actions.
Remark: we say that we execute a given policy π if given a state s we take the action a = π(s).

r Value function – For a given policy π and a given state s, we define the value function V π
as follows:

V π(s) = E

[
R(s0) + γR(s1) + γ2R(s2) + ...|s0 = s,π

]
r Bellman equation – The optimal Bellman equations characterizes the value function V π∗
of the optimal policy π∗:

V π
∗
(s) = R(s) + max

a∈A
γ
∑
s′∈S

Psa(s′)V π
∗
(s′)

Remark: we note that the optimal policy π∗ for a given state s is such that:

π∗(s) = argmax
a∈A

∑
s′∈S

Psa(s′)V ∗(s′)

r Value iteration algorithm – The value iteration algorithm is in two steps:

• We initialize the value:

V0(s) = 0

• We iterate the value based on the values before:

Vi+1(s) = R(s) + max
a∈A

[∑
s′∈S

γPsa(s′)Vi(s′)

]

r Maximum likelihood estimate – The maximum likelihood estimates for the state transition
probabilities are as follows:

Psa(s′) = #times took action a in state s and got to s′

#times took action a in state s

r Q-learning – Q-learning is a model-free estimation of Q, which is done as follows:

Q(s,a)← Q(s,a) + α

[
R(s,a,s′) + γmax

a′
Q(s′,a′)−Q(s,a)

]
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4 Machine Learning Tips and Tricks

4.1 Metrics

Given a set of data points {x(1), ..., x(m)}, where each x(i) has n features, associated to a set of
outcomes {y(1), ..., y(m)}, we want to assess a given classifier that learns how to predict y from
x.

4.1.1 Classification

In a context of a binary classification, here are the main metrics that are important to track to
assess the performance of the model.
r Confusion matrix – The confusion matrix is used to have a more complete picture when
assessing the performance of a model. It is defined as follows:

Predicted class
+ –

Actual class

TP FN
+ False Negatives

True Positives
Type II error

FP TN
– False Positives

True Negatives
Type I error

r Main metrics – The following metrics are commonly used to assess the performance of
classification models:

Metric Formula Interpretation

Accuracy TP + TN
TP + TN + FP + FN

Overall performance of model

Precision TP
TP + FP

How accurate the positive predictions are

Recall TP
TP + FN

Coverage of actual positive sample
Sensitivity

Specificity TN
TN + FP

Coverage of actual negative sample

F1 score 2TP
2TP + FP + FN

Hybrid metric useful for unbalanced classes

r ROC – The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by
varying the threshold. These metrics are are summed up in the table below:

Metric Formula Equivalent

True Positive Rate TP
TP + FN

Recall, sensitivity
TPR

False Positive Rate FP
TN + FP

1-specificity
FPR

r AUC – The area under the receiving operating curve, also noted AUC or AUROC, is the
area below the ROC as shown in the following figure:

4.1.2 Regression

r Basic metrics – Given a regression model f , the following metrics are commonly used to
assess the performance of the model:

Total sum of squares Explained sum of squares Residual sum of squares

SStot =
m∑
i=1

(yi − y)2 SSreg =
m∑
i=1

(f(xi)− y)2 SSres =
m∑
i=1

(yi − f(xi))2

r Coefficient of determination – The coefficient of determination, often noted R2 or r2,
provides a measure of how well the observed outcomes are replicated by the model and is defined
as follows:

R2 = 1− SSres

SStot

r Main metrics – The following metrics are commonly used to assess the performance of
regression models, by taking into account the number of variables n that they take into consid-
eration:

Mallow’s Cp AIC BIC Adjusted R2

SSres + 2(n+ 1)σ̂2

m
2
[

(n + 2) − log(L)
]

log(m)(n + 2) − 2 log(L) 1− (1−R2)(m− 1)
m− n− 1

where L is the likelihood and σ̂2 is an estimate of the variance associated with each response.
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4.2 Model selection

r Vocabulary – When selecting a model, we distinguish 3 different parts of the data that we
have as follows:

Training set Validation set Testing set

- Model is trained - Model is assessed - Model gives predictions
- Usually 80% of the dataset - Usually 20% of the dataset - Unseen data

- Also called hold-out
or development set

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen
test set. These are represented in the figure below:

r Cross-validation – Cross-validation, also noted CV, is a method that is used to select a
model that does not rely too much on the initial training set. The different types are summed
up in the table below:

k-fold Leave-p-out

- Training on k − 1 folds and - Training on n− p observations and
assessment on the remaining one assessment on the p remaining ones
- Generally k = 5 or 10 - Case p = 1 is called leave-one-out

The most commonly used method is called k-fold cross-validation and splits the training data
into k folds to validate the model on one fold while training the model on the k− 1 other folds,
all of this k times. The error is then averaged over the k folds and is named cross-validation
error.

r Regularization – The regularization procedure aims at avoiding the model to overfit the
data and thus deals with high variance issues. The following table sums up the different types
of commonly used regularization techniques:

LASSO Ridge Elastic Net

- Shrinks coefficients to 0 Makes coefficients smaller Tradeoff between variable
- Good for variable selection selection and small coefficients

...+ λ||θ||1 ...+ λ||θ||22 ...+ λ

[
(1− α)||θ||1 + α||θ||22

]
λ ∈ R λ ∈ R λ ∈ R, α ∈ [0,1]

r Model selection – Train model on training set, then evaluate on the development set, then
pick best performance model on the development set, and retrain all of that model on the whole
training set.

4.3 Diagnostics

r Bias – The bias of a model is the difference between the expected prediction and the correct
model that we try to predict for given data points.

r Variance – The variance of a model is the variability of the model prediction for given data
points.

r Bias/variance tradeoff – The simpler the model, the higher the bias, and the more complex
the model, the higher the variance.

Underfitting Just right Overfitting

- High training error - Training error - Low training error
Symptoms - Training error close slightly lower than - Training error much

to test error test error lower than test error
- High bias - High variance

Regression
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Classification

Deep learning

- Complexify model - Regularize
Remedies - Add more features - Get more data

- Train longer

r Error analysis – Error analysis is analyzing the root cause of the difference in performance
between the current and the perfect models.

r Ablative analysis – Ablative analysis is analyzing the root cause of the difference in perfor-
mance between the current and the baseline models.

5 Refreshers

5.1 Probabilities and Statistics

5.1.1 Introduction to Probability and Combinatorics

r Sample space – The set of all possible outcomes of an experiment is known as the sample
space of the experiment and is denoted by S.

r Event – Any subset E of the sample space is known as an event. That is, an event is a set
consisting of possible outcomes of the experiment. If the outcome of the experiment is contained
in E, then we say that E has occurred.

r Axioms of probability – For each event E, we denote P (E) as the probability of event E
occuring. By noting E1,...,En mutually exclusive events, we have the 3 following axioms:

(1) 0 6 P (E) 6 1 (2) P (S) = 1 (3) P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P (Ei)

r Permutation – A permutation is an arrangement of r objects from a pool of n objects, in a
given order. The number of such arrangements is given by P (n, r), defined as:

P (n, r) = n!
(n− r)!

r Combination – A combination is an arrangement of r objects from a pool of n objects, where
the order does not matter. The number of such arrangements is given by C(n, r), defined as:

C(n, r) = P (n, r)
r!

= n!
r!(n− r)!

Remark: we note that for 0 6 r 6 n, we have P (n,r) > C(n,r).

5.1.2 Conditional Probability

r Bayes’ rule – For events A and B such that P (B) > 0, we have:

P (A|B) = P (B|A)P (A)
P (B)

Remark: we have P (A ∩B) = P (A)P (B|A) = P (A|B)P (B).

r Partition – Let {Ai, i ∈ [[1,n]]} be such that for all i, Ai 6= ∅. We say that {Ai} is a partition
if we have:

∀i 6= j, Ai ∩Aj = ∅ and
n⋃
i=1

Ai = S

Remark: for any event B in the sample space, we have P (B) =
n∑
i=1

P (B|Ai)P (Ai).
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r Extended form of Bayes’ rule – Let {Ai, i ∈ [[1,n]]} be a partition of the sample space.
We have:

P (Ak|B) = P (B|Ak)P (Ak)
n∑
i=1

P (B|Ai)P (Ai)

r Independence – Two events A and B are independent if and only if we have:

P (A ∩B) = P (A)P (B)

5.1.3 Random Variables

r Random variable – A random variable, often noted X, is a function that maps every element
in a sample space to a real line.

r Cumulative distribution function (CDF) – The cumulative distribution function F ,
which is monotonically non-decreasing and is such that lim

x→−∞
F (x) = 0 and lim

x→+∞
F (x) = 1, is

defined as:

F (x) = P (X 6 x)

Remark: we have P (a < X 6 B) = F (b)− F (a).

r Probability density function (PDF) – The probability density function f is the probability
that X takes on values between two adjacent realizations of the random variable.

r Relationships involving the PDF and CDF – Here are the important properties to know
in the discrete (D) and the continuous (C) cases.

Case CDF F PDF f Properties of PDF

(D) F (x) =
∑
xi6x

P (X = xi) f(xj) = P (X = xj) 0 6 f(xj) 6 1 and
∑
j

f(xj) = 1

(C) F (x) =
ˆ x
−∞

f(y)dy f(x) = dF

dx
f(x) > 0 and

ˆ +∞

−∞
f(x)dx = 1

r Variance – The variance of a random variable, often noted Var(X) or σ2, is a measure of the
spread of its distribution function. It is determined as follows:

Var(X) = E[(X − E[X])2] = E[X2]− E[X]2

r Standard deviation – The standard deviation of a random variable, often noted σ, is a
measure of the spread of its distribution function which is compatible with the units of the
actual random variable. It is determined as follows:

σ =
√

Var(X)

r Expectation and Moments of the Distribution – Here are the expressions of the expected
value E[X], generalized expected value E[g(X)], kth moment E[Xk] and characteristic function
ψ(ω) for the discrete and continuous cases:

Case E[X] E[g(X)] E[Xk] ψ(ω)

(D)
n∑
i=1

xif(xi)
n∑
i=1

g(xi)f(xi)
n∑
i=1

xki f(xi)
n∑
i=1

f(xi)eiωxi

(C)
ˆ +∞

−∞
xf(x)dx

ˆ +∞

−∞
g(x)f(x)dx

ˆ +∞

−∞
xkf(x)dx

ˆ +∞

−∞
f(x)eiωxdx

Remark: we have eiωx = cos(ωx) + i sin(ωx).

r Revisiting the kth moment – The kth moment can also be computed with the characteristic
function as follows:

E[Xk] = 1
ik

[
∂kψ

∂ωk

]
ω=0

r Transformation of random variables – Let the variables X and Y be linked by some
function. By noting fX and fY the distribution function of X and Y respectively, we have:

fY (y) = fX(x)
∣∣∣dx
dy

∣∣∣
r Leibniz integral rule – Let g be a function of x and potentially c, and a, b boundaries that
may depend on c. We have:

∂

∂c

(ˆ b
a
g(x)dx

)
= ∂b

∂c
· g(b)− ∂a

∂c
· g(a) +

ˆ b
a

∂g

∂c
(x)dx

r Chebyshev’s inequality – Let X be a random variable with expected value µ and standard
deviation σ. For k, σ > 0, we have the following inequality:

P (|X − µ| > kσ) 6
1
k2

5.1.4 Jointly Distributed Random Variables

r Conditional density – The conditional density of X with respect to Y , often noted fX|Y ,
is defined as follows:

fX|Y (x) = fXY (x,y)
fY (y)

r Independence – Two random variables X and Y are said to be independent if we have:
fXY (x,y) = fX(x)fY (y)
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r Marginal density and cumulative distribution – From the joint density probability
function fXY , we have:

Case Marginal density Cumulative function

(D) fX(xi) =
∑
j

fXY (xi,yj) FXY (x,y) =
∑
xi6x

∑
yj6y

fXY (xi,yj)

(C) fX(x) =
ˆ +∞

−∞
fXY (x,y)dy FXY (x,y) =

ˆ x
−∞

ˆ y
−∞

fXY (x′,y′)dx′dy′

r Distribution of a sum of independent random variables – Let Y = X1 + ...+Xn with
X1, ..., Xn independent. We have:

ψY (ω) =
n∏
k=1

ψXk (ω)

r Covariance – We define the covariance of two random variables X and Y , that we note σ2
XY

or more commonly Cov(X,Y ), as follows:

Cov(X,Y ) , σ2
XY = E[(X − µX)(Y − µY )] = E[XY ]− µXµY

r Correlation – By noting σX , σY the standard deviations ofX and Y , we define the correlation
between the random variables X and Y , noted ρXY , as follows:

ρXY =
σ2
XY

σXσY

Remarks: For any X,Y , we have ρXY ∈ [−1,1]. If X and Y are independent, then ρXY = 0.

r Main distributions – Here are the main distributions to have in mind:

Type Distribution PDF ψ(ω) E[X] Var(X)

X ∼ B(n, p) P (X = x) =
(n
x

)
pxqn−x (peiω + q)n np npq

Binomial x ∈ [[0,n]]
(D)

X ∼ Po(µ) P (X = x) = µx

x!
e−µ eµ(eiω−1) µ µ

Poisson x ∈ N

X ∼ U(a, b) f(x) = 1
b− a

eiωb − eiωa

(b− a)iω
a+ b

2
(b− a)2

12
Uniform x ∈ [a,b]

(C) X ∼ N (µ, σ) f(x) = 1
√

2πσ
e
− 1

2

(
x−µ
σ

)2

eiωµ−
1
2ω

2σ2
µ σ2

Gaussian x ∈ R

X ∼ Exp(λ) f(x) = λe−λx
1

1− iω
λ

1
λ

1
λ2

Exponential x ∈ R+

5.1.5 Parameter estimation

r Random sample – A random sample is a collection of n random variables X1, ..., Xn that
are independent and identically distributed with X.
r Estimator – An estimator θ̂ is a function of the data that is used to infer the value of an
unknown parameter θ in a statistical model.
r Bias – The bias of an estimator θ̂ is defined as being the difference between the expected
value of the distribution of θ̂ and the true value, i.e.:

Bias(θ̂) = E[θ̂]− θ

Remark: an estimator is said to be unbiased when we have E[θ̂] = θ.
r Sample mean and variance – The sample mean and the sample variance of a random
sample are used to estimate the true mean µ and the true variance σ2 of a distribution, are
noted X and s2 respectively, and are such that:

X = 1
n

n∑
i=1

Xi and s2 = σ̂2 = 1
n− 1

n∑
i=1

(Xi −X)2

r Central Limit Theorem – Let us have a random sample X1, ..., Xn following a given
distribution with mean µ and variance σ2, then we have:

X ∼
n→+∞

N
(
µ,

σ
√
n

)
5.2 Linear Algebra and Calculus

5.2.1 General notations

r Vector – We note x ∈ Rn a vector with n entries, where xi ∈ R is the ith entry:

x =

( x1x2
...
xn

)
∈ Rn

r Matrix – We note A ∈ Rm×n a matrix with m rows and n columns, where Ai,j ∈ R is the
entry located in the ith row and jth column:

A =

(
A1,1 · · · A1,n
...

...
Am,1 · · · Am,n

)
∈ Rm×n

Remark: the vector x defined above can be viewed as a n × 1 matrix and is more particularly
called a column-vector.

r Identity matrix – The identity matrix I ∈ Rn×n is a square matrix with ones in its diagonal
and zero everywhere else:

I =


1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1


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Remark: for all matrices A ∈ Rn×n, we have A× I = I ×A = A.

r Diagonal matrix – A diagonal matrix D ∈ Rn×n is a square matrix with nonzero values in
its diagonal and zero everywhere else:

D =


d1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 dn


Remark: we also note D as diag(d1,...,dn).

5.2.2 Matrix operations

r Vector-vector multiplication – There are two types of vector-vector products:

• inner product: for x,y ∈ Rn, we have:

xT y =
n∑
i=1

xiyi ∈ R

• outer product: for x ∈ Rm, y ∈ Rn, we have:

xyT =
( x1y1 · · · x1yn

...
...

xmy1 · · · xmyn

)
∈ Rm×n

r Matrix-vector multiplication – The product of matrix A ∈ Rm×n and vector x ∈ Rn is a
vector of size Rm, such that:

Ax =

 aTr,1x

...
aTr,mx

 =
n∑
i=1

ac,ixi ∈ Rm

where aTr,i are the vector rows and ac,j are the vector columns of A, and xi are the entries
of x.

r Matrix-matrix multiplication – The product of matrices A ∈ Rm×n and B ∈ Rn×p is a
matrix of size Rn×p, such that:

AB =

 aTr,1bc,1 · · · aTr,1bc,p
...

...
aTr,mbc,1 · · · aTr,mbc,p

 =
n∑
i=1

ac,ib
T
r,i ∈ Rn×p

where aTr,i, bTr,i are the vector rows and ac,j , bc,j are the vector columns of A and B respec-
tively.

r Transpose – The transpose of a matrix A ∈ Rm×n, noted AT , is such that its entries are
flipped:

∀i,j, ATi,j = Aj,i

Remark: for matrices A,B, we have (AB)T = BTAT .

r Inverse – The inverse of an invertible square matrix A is noted A−1 and is the only matrix
such that:

AA−1 = A−1A = I

Remark: not all square matrices are invertible. Also, for matrices A,B, we have (AB)−1 =
B−1A−1

r Trace – The trace of a square matrix A, noted tr(A), is the sum of its diagonal entries:

tr(A) =
n∑
i=1

Ai,i

Remark: for matrices A,B, we have tr(AT ) = tr(A) and tr(AB) = tr(BA)

r Determinant – The determinant of a square matrix A ∈ Rn×n, noted |A| or det(A) is
expressed recursively in terms of A\i,\j , which is the matrix A without its ith row and jth

column, as follows:

det(A) = |A| =
n∑
j=1

(−1)i+jAi,j |A\i,\j |

Remark: A is invertible if and only if |A| 6= 0. Also, |AB| = |A||B| and |AT | = |A|.

5.2.3 Matrix properties

r Symmetric decomposition – A given matrix A can be expressed in terms of its symmetric
and antisymmetric parts as follows:

A = A+AT

2︸ ︷︷ ︸
Symmetric

+ A−AT

2︸ ︷︷ ︸
Antisymmetric

r Norm – A norm is a function N : V −→ [0, +∞[ where V is a vector space, and such that
for all x,y ∈ V , we have:

• N(x+ y) 6 N(x) +N(y)

• N(ax) = |a|N(x) for a scalar

• if N(x) = 0, then x = 0

For x ∈ V , the most commonly used norms are summed up in the table below:
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Norm Notation Definition Use case

Manhattan, L1 ||x||1
n∑
i=1

|xi| LASSO regularization

Euclidean, L2 ||x||2

√√√√ n∑
i=1

x2
i Ridge regularization

p-norm, Lp ||x||p

(
n∑
i=1

xpi

) 1
p

Hölder inequality

Infinity, L∞ ||x||∞ max
i
|xi| Uniform convergence

r Linearly dependence – A set of vectors is said to be linearly dependent if one of the vectors
in the set can be defined as a linear combination of the others.
Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

r Matrix rank – The rank of a given matrix A is noted rank(A) and is the dimension of the
vector space generated by its columns. This is equivalent to the maximum number of linearly
independent columns of A.

r Positive semi-definite matrix – A matrix A ∈ Rn×n is positive semi-definite (PSD) and
is noted A � 0 if we have:

A = AT and ∀x ∈ Rn, xTAx > 0

Remark: similarly, a matrix A is said to be positive definite, and is noted A � 0, if it is a PSD
matrix which satisfies for all non-zero vector x, xTAx > 0.

r Eigenvalue, eigenvector – Given a matrix A ∈ Rn×n, λ is said to be an eigenvalue of A if
there exists a vector z ∈ Rn\{0}, called eigenvector, such that we have:

Az = λz

r Spectral theorem – Let A ∈ Rn×n. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U ∈ Rn×n. By noting Λ = diag(λ1,...,λn), we have:

∃Λ diagonal, A = UΛUT

r Singular-value decomposition – For a given matrix A of dimensions m× n, the singular-
value decomposition (SVD) is a factorization technique that guarantees the existence of U m×m
unitary, Σ m× n diagonal and V n× n unitary matrices, such that:

A = UΣV T

5.2.4 Matrix calculus

r Gradient – Let f : Rm×n → R be a function and A ∈ Rm×n be a matrix. The gradient of f
with respect to A is a m× n matrix, noted ∇Af(A), such that:

(
∇Af(A)

)
i,j

= ∂f(A)
∂Ai,j

Remark: the gradient of f is only defined when f is a function that returns a scalar.

r Hessian – Let f : Rn → R be a function and x ∈ Rn be a vector. The hessian of f with
respect to x is a n× n symmetric matrix, noted ∇2

xf(x), such that:(
∇2
xf(x)

)
i,j

= ∂2f(x)
∂xi∂xj

Remark: the hessian of f is only defined when f is a function that returns a scalar.

r Gradient operations – For matrices A,B,C, the following gradient properties are worth
having in mind:

∇Atr(AB) = BT ∇AT f(A) = (∇Af(A))T

∇Atr(ABATC) = CAB + CTABT ∇A|A| = |A|(A−1)T
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1 Convolutional Neural Networks

1.1 Overview

r Architecture of a traditional CNN – Convolutional neural networks, also known as CNNs,
are a specific type of neural networks that are generally composed of the following layers:

The convolution layer and the pooling layer can be fine-tuned with respect to hyperparameters
that are described in the next sections.

1.2 Types of layer

r Convolutional layer (CONV) – The convolution layer (CONV) uses filters that perform
convolution operations as it is scanning the input I with respect to its dimensions. Its hyperpa-
rameters include the filter size F and stride S. The resulting output O is called feature map or
activation map.

Remark: the convolution step can be generalized to the 1D and 3D cases as well.

r Pooling (POOL) – The pooling layer (POOL) is a downsampling operation, typically applied
after a convolution layer, which does some spatial invariance. In particular, max and average
pooling are special kinds of pooling where the maximum and average value is taken, respectively.
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Max pooling Average pooling

Purpose Each pooling operation selects the
maximum value of the current view

Each pooling operation averages
the values of the current view

Illustration

Comments - Preserves detected features
- Most commonly used

- Downsamples feature map
- Used in LeNet

r Fully Connected (FC) – The fully connected layer (FC) operates on a flattened input where
each input is connected to all neurons. If present, FC layers are usually found towards the end
of CNN architectures and can be used to optimize objectives such as class scores.

1.3 Filter hyperparameters

The convolution layer contains filters for which it is important to know the meaning behind its
hyperparameters.

r Dimensions of a filter – A filter of size F ×F applied to an input containing C channels is
a F × F × C volume that performs convolutions on an input of size I × I × C and produces an
output feature map (also called activation map) of size O ×O × 1.

Remark: the application of K filters of size F × F results in an output feature map of size
O ×O ×K.

r Stride – For a convolutional or a pooling operation, the stride S denotes the number of pixels
by which the window moves after each operation.

r Zero-padding – Zero-padding denotes the process of adding P zeroes to each side of the
boundaries of the input. This value can either be manually specified or automatically set through
one of the three modes detailed below:

Valid Same Full

Value P = 0
Pstart =

⌊
Sd I

S
e−I+F−S

2

⌋
Pend =

⌈
Sd I

S
e−I+F−S

2

⌉ Pstart ∈ [[0,F − 1]]

Pend = F − 1

Illustration

Purpose

- No padding

- Drops last
convolution if
dimensions do not
match

- Padding such that feature

map size has size
⌈
I
S

⌉
- Output size is
mathematically convenient
- Also called ’half’ padding

- Maximum padding
such that end
convolutions are
applied on the limits
of the input
- Filter ’sees’ the input
end-to-end

1.4 Tuning hyperparameters

r Parameter compatibility in convolution layer – By noting I the length of the input
volume size, F the length of the filter, P the amount of zero padding, S the stride, then the
output size O of the feature map along that dimension is given by:

O = I − F + Pstart + Pend
S

+ 1

Remark: often times, Pstart = Pend , P , in which case we can replace Pstart + Pend by 2P in
the formula above.
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r Understanding the complexity of the model – In order to assess the complexity of a
model, it is often useful to determine the number of parameters that its architecture will have.
In a given layer of a convolutional neural network, it is done as follows:

CONV POOL FC

Illustration

Input size I × I × C I × I × C Nin

Output size O ×O ×K O ×O × C Nout

Number of
parameters (F × F × C + 1) ·K 0 (Nin + 1)×Nout

Remarks

- One bias parameter
per filter
- In most cases, S < F

- A common choice
for K is 2C

- Pooling operation
done channel-wise

- In most cases, S = F

- Input is flattened
- One bias parameter
per neuron
- The number of FC
neurons is free of
structural constraints

r Receptive field – The receptive field at layer k is the area denoted Rk × Rk of the input
that each pixel of the k-th activation map can ’see’. By calling Fj the filter size of layer j and
Si the stride value of layer i and with the convention S0 = 1, the receptive field at layer k can
be computed with the formula:

Rk = 1 +
k∑
j=1

(Fj − 1)
j−1∏
i=0

Si

In the example below, we have F1 = F2 = 3 and S1 = S2 = 1, which gives R2 = 1+2 · 1+2 · 1 =
5.

1.5 Commonly used activation functions

r Rectified Linear Unit – The rectified linear unit layer (ReLU) is an activation function g
that is used on all elements of the volume. It aims at introducing non-linearities to the network.
Its variants are summarized in the table below:

ReLU Leaky ReLU ELU

g(z) = max(0,z) g(z) = max(εz,z)
with ε� 1

g(z) = max(α(ez − 1),z)
with α� 1

Non-linearity complexities
biologically interpretable

Addresses dying ReLU
issue for negative values Differentiable everywhere

r Softmax – The softmax step can be seen as a generalized logistic function that takes as input
a vector of scores x ∈ Rn and outputs a vector of output probability p ∈ Rn through a softmax
function at the end of the architecture. It is defined as follows:

p =
(p1

...
pn

)
where pi = exi

n∑
j=1

exj

1.6 Object detection

r Types of models – There are 3 main types of object recognition algorithms, for which the
nature of what is predicted is different. They are described in the table below:

Image classification Classification
w. localization Detection

- Classifies a picture

- Predicts probability
of object

- Detects object in a picture
- Predicts probability of
object and where it is
located

- Detects up to several objects
in a picture
- Predicts probabilities of objects
and where they are located

Traditional CNN Simplified YOLO, R-CNN YOLO, R-CNN

r Detection – In the context of object detection, different methods are used depending on
whether we just want to locate the object or detect a more complex shape in the image. The
two main ones are summed up in the table below:
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Bounding box detection Landmark detection

Detects the part of the image where
the object is located

- Detects a shape or characteristics of
an object (e.g. eyes)
- More granular

Box of center (bx,by), height bh
and width bw

Reference points (l1x,l1y), ...,(lnx,lny)

r Intersection over Union – Intersection over Union, also known as IoU, is a function that
quantifies how correctly positioned a predicted bounding box Bp is over the actual bounding
box Ba. It is defined as:

IoU(Bp,Ba) = Bp ∩Ba
Bp ∪Ba

Remark: we always have IoU ∈ [0,1]. By convention, a predicted bounding box Bp is considered
as being reasonably good if IoU(Bp,Ba) > 0.5.

r Anchor boxes – Anchor boxing is a technique used to predict overlapping bounding boxes.
In practice, the network is allowed to predict more than one box simultaneously, where each box
prediction is constrained to have a given set of geometrical properties. For instance, the first
prediction can potentially be a rectangular box of a given form, while the second will be another
rectangular box of a different geometrical form.

r Non-max suppression – The non-max suppression technique aims at removing duplicate
overlapping bounding boxes of a same object by selecting the most representative ones. After
having removed all boxes having a probability prediction lower than 0.6, the following steps are
repeated while there are boxes remaining:

• Step 1: Pick the box with the largest prediction probability.

• Step 2: Discard any box having an IoU > 0.5 with the previous box.

r YOLO – You Only Look Once (YOLO) is an object detection algorithm that performs the
following steps:

• Step 1: Divide the input image into a G×G grid.

• Step 2: For each grid cell, run a CNN that predicts y of the following form:

y =
[
pc,bx,by ,bh,bw,c1,c2,...,cp︸ ︷︷ ︸

repeated k times

,...
]T
∈ RG×G×k×(5+p)

where pc is the probability of detecting an object, bx,by ,bh,bw are the properties of the
detected bouding box, c1,...,cp is a one-hot representation of which of the p classes were
detected, and k is the number of anchor boxes.

• Step 3: Run the non-max suppression algorithm to remove any potential duplicate over-
lapping bounding boxes.

Remark: when pc = 0, then the network does not detect any object. In that case, the corre-
sponding predictions bx, ..., cp have to be ignored.

r R-CNN – Region with Convolutional Neural Networks (R-CNN) is an object detection algo-
rithm that first segments the image to find potential relevant bounding boxes and then run the
detection algorithm to find most probable objects in those bounding boxes.

Remark: although the original algorithm is computationally expensive and slow, newer archi-
tectures enabled the algorithm to run faster, such as Fast R-CNN and Faster R-CNN.
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1.6.1 Face verification and recognition

r Types of models – Two main types of model are summed up in table below:

Face verification Face recognition

- Is this the correct person?
- One-to-one lookup

- Is this one of the K persons in the database?
- One-to-many lookup

r One Shot Learning – One Shot Learning is a face verification algorithm that uses a limited
training set to learn a similarity function that quantifies how different two given images are. The
similarity function applied to two images is often noted d(image 1, image 2).

r Siamese Network – Siamese Networks aim at learning how to encode images to then quantify
how different two images are. For a given input image x(i), the encoded output is often noted
as f(x(i)).

r Triplet loss – The triplet loss ` is a loss function computed on the embedding representation
of a triplet of images A (anchor), P (positive) and N (negative). The anchor and the positive
example belong to a same class, while the negative example to another one. By calling α ∈ R+

the margin parameter, this loss is defined as follows:

`(A,P,N) = max (d(A,P )− d(A,N) + α,0)

1.6.2 Neural style transfer

r Motivation – The goal of neural style transfer is to generate an image G based on a given
content C and a given style S.

r Activation – In a given layer l, the activation is noted a[l] and is of dimensions nH ×nw×nc

r Content cost function – The content cost function Jcontent(C,G) is used to determine how
the generated image G differs from the original content image C. It is defined as follows:

Jcontent(C,G) = 1
2
||a[l](C) − a[l](G)||2

r Style matrix – The style matrix G[l] of a given layer l is a Gram matrix where each of its
elements G[l]

kk′ quantifies how correlated the channels k and k′ are. It is defined with respect to
activations a[l] as follows:

G
[l]
kk′ =

n
[l]
H∑
i=1

n
[l]
w∑

j=1

a
[l]
ijk
a

[l]
ijk′

Remark: the style matrix for the style image and the generated image are noted G[l](S) and
G[l](G) respectively.

r Style cost function – The style cost function Jstyle(S,G) is used to determine how the
generated image G differs from the style S. It is defined as follows:

J
[l]
style(S,G) = 1

(2nHnwnc)2 ||G
[l](S) −G[l](G)||2F = 1

(2nHnwnc)2

nc∑
k,k′=1

(
G

[l](S)
kk′ −G[l](G)

kk′

)2

r Overall cost function – The overall cost function is defined as being a combination of the
content and style cost functions, weighted by parameters α,β, as follows:

J(G) = αJcontent(C,G) + βJstyle(S,G)

Remark: a higher value of α will make the model care more about the content while a higher
value of β will make it care more about the style.

1.6.3 Architectures using computational tricks

r Generative Adversarial Network – Generative adversarial networks, also known as GANs,
are composed of a generative and a discriminative model, where the generative model aims at
generating the most truthful output that will be fed into the discriminative which aims at
differentiating the generated and true image.
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Remark: use cases using variants of GANs include text to image, music generation and syn-
thesis.

r ResNet – The Residual Network architecture (also called ResNet) uses residual blocks with a
high number of layers meant to decrease the training error. The residual block has the following
characterizing equation:

a[l+2] = g(a[l] + z[l+2])

r Inception Network – This architecture uses inception modules and aims at giving a try
at different convolutions in order to increase its performance. In particular, it uses the 1 × 1
convolution trick to lower the burden of computation.

? ? ?

2 Recurrent Neural Networks

2.1 Overview

r Architecture of a traditional RNN – Recurrent neural networks, also known as RNNs,
are a class of neural networks that allow previous outputs to be used as inputs while having
hidden states. They are typically as follows:

For each timestep t, the activation a<t> and the output y<t> are expressed as follows:

a<t> = g1(Waaa
<t−1> +Waxx

<t> + ba) and y<t> = g2(Wyaa
<t> + by)

where Wax,Waa,Wya, ba, by are coefficients that are shared temporally and g1, g2 activation
functions

The pros and cons of a typical RNN architecture are summed up in the table below:

Advantages Drawbacks

- Possibility of processing input of any length
- Model size not increasing with size of input
- Computation takes into account
historical information
- Weights are shared across time

- Computation being slow
- Difficulty of accessing information
from a long time ago
- Cannot consider any future input
for the current state

r Applications of RNNs – RNN models are mostly used in the fields of natural language
processing and speech recognition. The different applications are summed up in the table below:

Stanford University 6 Winter 2019



CS 230 – Deep Learning Shervine Amidi & Afshine Amidi

Type of RNN Illustration Example

One-to-one

Tx = Ty = 1
Traditional neural network

One-to-many

Tx = 1, Ty > 1
Music generation

Many-to-one

Tx > 1, Ty = 1
Sentiment classification

Many-to-many

Tx = Ty

Name entity recognition

Many-to-many

Tx 6= Ty

Machine translation

r Loss function – In the case of a recurrent neural network, the loss function L of all time
steps is defined based on the loss at every time step as follows:

L(ŷ,y) =
Ty∑
t=1

L(ŷ<t>,y<t>)

r Backpropagation through time – Backpropagation is done at each point in time. At
timestep T , the derivative of the loss L with respect to weight matrix W is expressed as follows:

∂L(T )

∂W
=

T∑
t=1

∂L(T )

∂W

∣∣∣∣
(t)

2.2 Handling long term dependencies

r Commonly used activation functions – The most common activation functions used in
RNN modules are described below:

Sigmoid Tanh RELU

g(z) = 1
1 + e−z

g(z) = ez − e−z

ez + e−z
g(z) = max(0,z)

r Vanishing/exploding gradient – The vanishing and exploding gradient phenomena are
often encountered in the context of RNNs. The reason why they happen is that it is difficult
to capture long term dependencies because of multiplicative gradient that can be exponentially
decreasing/increasing with respect to the number of layers.

r Gradient clipping – It is a technique used to cope with the exploding gradient problem
sometimes encountered when performing backpropagation. By capping the maximum value for
the gradient, this phenomenon is controlled in practice.

r Types of gates – In order to remedy the vanishing gradient problem, specific gates are used
in some types of RNNs and usually have a well-defined purpose. They are usually noted Γ and
are equal to:

Γ = σ(Wx<t> + Ua<t−1> + b)

where W,U, b are coefficients specific to the gate and σ is the sigmoid function. The main ones
are summed up in the table below:
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Type of gate Role Used in

Update gate Γu How much past should matter now? GRU, LSTM

Relevance gate Γr Drop previous information? GRU, LSTM

Forget gate Γf Erase a cell or not? LSTM

Output gate Γo How much to reveal of a cell? LSTM

r GRU/LSTM – Gated Recurrent Unit (GRU) and Long Short-Term Memory units (LSTM)
deal with the vanishing gradient problem encountered by traditional RNNs, with LSTM being
a generalization of GRU. Below is a table summing up the characterizing equations of each
architecture:

Gated Recurrent Unit
(GRU)

Long Short-Term Memory
(LSTM)

c̃<t> tanh(Wc[Γr ? a<t−1>,x<t>] + bc) tanh(Wc[Γr ? a<t−1>,x<t>] + bc)

c<t> Γu ? c̃<t> + (1− Γu) ? c<t−1> Γu ? c̃<t> + Γf ? c<t−1>

a<t> c<t> Γo ? c<t>

Dependencies

Remark: the sign ? denotes the element-wise multiplication between two vectors.

r Variants of RNNs – The table below sums up the other commonly used RNN architectures:

Bidirectional
(BRNN)

Deep
(DRNN)

2.3 Learning word representation

In this section, we note V the vocabulary and |V | its size.

2.3.1 Motivation and notations
r Representation techniques – The two main ways of representing words are summed up in
the table below:

1-hot representation Word embedding

- Noted ow
- Naive approach, no similarity information

- Noted ew
- Takes into account words similarity

r Embedding matrix – For a given word w, the embedding matrix E is a matrix that maps
its 1-hot representation ow to its embedding ew as follows:

ew = Eow

Remark: learning the embedding matrix can be done using target/context likelihood models.

2.3.2 Word embeddings
r Word2vec – Word2vec is a framework aimed at learning word embeddings by estimating the
likelihood that a given word is surrounded by other words. Popular models include skip-gram,
negative sampling and CBOW.

r Skip-gram – The skip-gram word2vec model is a supervised learning task that learns word
embeddings by assessing the likelihood of any given target word t happening with a context
word c. By noting θt a parameter associated with t, the probability P (t|c) is given by:
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P (t|c) =
exp(θTt ec)
|V |∑
j=1

exp(θTj ec)

Remark: summing over the whole vocabulary in the denominator of the softmax part makes
this model computationally expensive. CBOW is another word2vec model using the surrounding
words to predict a given word.

r Negative sampling – It is a set of binary classifiers using logistic regressions that aim at
assessing how a given context and a given target words are likely to appear simultaneously, with
the models being trained on sets of k negative examples and 1 positive example. Given a context
word c and a target word t, the prediction is expressed by:

P (y = 1|c,t) = σ(θTt ec)

Remark: this method is less computationally expensive than the skip-gram model.

r GloVe – The GloVe model, short for global vectors for word representation, is a word em-
bedding technique that uses a co-occurence matrix X where each Xi,j denotes the number of
times that a target i occurred with a context j. Its cost function J is as follows:

J(θ) = 1
2

|V |∑
i,j=1

f(Xij)(θTi ej + bi + b′j − log(Xij))2

here f is a weighting function such that Xi,j = 0 =⇒ f(Xi,j) = 0.
Given the symmetry that e and θ play in this model, the final word embedding e(final)

w is given
by:

e
(final)
w = ew + θw

2

Remark: the individual components of the learned word embeddings are not necessarily inter-
pretable.

2.4 Comparing words
r Cosine similarity – The cosine similarity between words w1 and w2 is expressed as follows:

similarity = w1 ·w2

||w1|| ||w2||
= cos(θ)

Remark: θ is the angle between words w1 and w2.

r t-SNE – t-SNE (t-distributed Stochastic Neighbor Embedding) is a technique aimed at re-
ducing high-dimensional embeddings into a lower dimensional space. In practice, it is commonly
used to visualize word vectors in the 2D space.

2.5 Language model

r Overview – A language model aims at estimating the probability of a sentence P (y).

r n-gram model – This model is a naive approach aiming at quantifying the probability that
an expression appears in a corpus by counting its number of appearance in the training data.

r Perplexity – Language models are commonly assessed using the perplexity metric, also
known as PP, which can be interpreted as the inverse probability of the dataset normalized by
the number of words T . The perplexity is such that the lower, the better and is defined as
follows:

PP =
T∏
t=1

(
1∑|V |

j=1 y
(t)
j · ŷ

(t)
j

) 1
T

Remark: PP is commonly used in t-SNE.

2.6 Machine translation

r Overview – A machine translation model is similar to a language model except it has an
encoder network placed before. For this reason, it is sometimes referred as a conditional language
model. The goal is to find a sentence y such that:

y = arg max
y<1>,...,y<Ty>

P (y<1>,...,y<Ty>|x)

r Beam search – It is a heuristic search algorithm used in machine translation and speech
recognition to find the likeliest sentence y given an input x.

• Step 1: Find top B likely words y<1>

• Step 2: Compute conditional probabilities y<k>|x,y<1>,...,y<k−1>

• Step 3: Keep top B combinations x,y<1>,...,y<k>
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Remark: if the beam width is set to 1, then this is equivalent to a naive greedy search.

r Beam width – The beam width B is a parameter for beam search. Large values of B yield
to better result but with slower performance and increased memory. Small values of B lead to
worse results but is less computationally intensive. A standard value for B is around 10.

r Length normalization – In order to improve numerical stability, beam search is usually ap-
plied on the following normalized objective, often called the normalized log-likelihood objective,
defined as:

Objective = 1
Tαy

Ty∑
t=1

log
[
p(y<t>|x,y<1>, ..., y<t−1>)

]
Remark: the parameter α can be seen as a softener, and its value is usually between 0.5 and 1.

r Error analysis – When obtaining a predicted translation ŷ that is bad, one can wonder why
we did not get a good translation y∗ by performing the following error analysis:

Case P (y∗|x) > P (ŷ|x) P (y∗|x) 6 P (ŷ|x)

Root cause Beam search faulty RNN faulty

Remedies Increase beam width
- Try different architecture
- Regularize
- Get more data

r Bleu score – The bilingual evaluation understudy (bleu) score quantifies how good a machine
translation is by computing a similarity score based on n-gram precision. It is defined as follows:

bleu score = exp

(
1
n

n∑
k=1

pk

)
where pn is the bleu score on n-gram only defined as follows:

pn =

∑
n-gram∈ŷ

countclip(n-gram)

∑
n-gram∈ŷ

count(n-gram)

Remark: a brevity penalty may be applied to short predicted translations to prevent an artificially
inflated bleu score.

2.7 Attention

r Attention model – This model allows an RNN to pay attention to specific parts of the input
that is considered as being important, which improves the performance of the resulting model
in practice. By noting α<t,t′> the amount of attention that the output y<t> should pay to the
activation a<t′> and c<t> the context at time t, we have:

c<t> =
∑
t′

α<t,t
′>a<t

′> with
∑
t′

α<t,t
′> = 1

Remark: the attention scores are commonly used in image captioning and machine translation.

r Attention weight – The amount of attention that the output y<t> should pay to the
activation a<t′> is given by α<t,t′> computed as follows:

α<t,t
′> = exp(e<t,t′>)

Tx∑
t′′=1

exp(e<t,t
′′>)

Remark: computation complexity is quadratic with respect to Tx.

? ? ?
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3 Deep Learning Tips and Tricks

3.1 Data processing

r Data augmentation – Deep learning models usually need a lot of data to be properly trained.
It is often useful to get more data from the existing ones using data augmentation techniques.
The main ones are summed up in the table below. More precisely, given the following input
image, here are the techniques that we can apply:

Original Flip Rotation Random crop

- Image without

any modification

- Flipped with respect
to an axis for which
the meaning of the
image is preserved

- Rotation with
a slight angle
- Simulates incorrect
horizon calibration

- Random focus
on one part of
the image
- Several random
crops can be
done in a row

Color shift Noise addition Information loss Contrast change

- Nuances of RGB
is slightly changed
- Captures noise
that can occur
with light exposure

- Addition of noise
- More tolerance to
quality variation of
inputs

- Parts of image
ignored
- Mimics potential
loss of parts of image

- Luminosity changes
- Controls difference
in exposition due
to time of day

r Batch normalization – It is a step of hyperparameter γ, β that normalizes the batch {xi}.
By noting µB , σ2

B the mean and variance of that we want to correct to the batch, it is done as
follows:

xi ←− γ
xi − µB√
σ2
B + ε

+ β

It is usually done after a fully connected/convolutional layer and before a non-linearity layer and
aims at allowing higher learning rates and reducing the strong dependence on initialization.

3.2 Training a neural network

3.2.1 Definitions

r Epoch – In the context of training a model, epoch is a term used to refer to one iteration
where the model sees the whole training set to update its weights.

r Mini-batch gradient descent – During the training phase, updating weights is usually not
based on the whole training set at once due to computation complexities or one data point due
to noise issues. Instead, the update step is done on mini-batches, where the number of data
points in a batch is a hyperparameter that we can tune.

r Loss function – In order to quantify how a given model performs, the loss function L is
usually used to evaluate to what extent the actual outputs y are correctly predicted by the
model outputs z.

r Cross-entropy loss – In the context of binary classification in neural networks, the cross-
entropy loss L(z,y) is commonly used and is defined as follows:

L(z,y) = −
[
y log(z) + (1− y) log(1− z)

]

3.2.2 Finding optimal weights

r Backpropagation – Backpropagation is a method to update the weights in the neural network
by taking into account the actual output and the desired output. The derivative with respect
to each weight w is computed using the chain rule.

Using this method, each weight is updated with the rule:

w ←− w − α
∂L(z,y)
∂w

r Updating weights – In a neural network, weights are updated as follows:

• Step 1: Take a batch of training data and perform forward propagation to compute the
loss.

• Step 2: Backpropagate the loss to get the gradient of the loss with respect to each weight.

• Step 3: Use the gradients to update the weights of the network.
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3.3 Parameter tuning

3.3.1 Weights initialization

r Xavier initialization – Instead of initializing the weights in a purely random manner, Xavier
initialization enables to have initial weights that take into account characteristics that are unique
to the architecture.

r Transfer learning – Training a deep learning model requires a lot of data and more impor-
tantly a lot of time. It is often useful to take advantage of pre-trained weights on huge datasets
that took days/weeks to train, and leverage it towards our use case. Depending on how much
data we have at hand, here are the different ways to leverage this:

Training size Illustration Explanation

Small Freezes all layers,
trains weights on softmax

Medium
Freezes most layers,
trains weights on last
layers and softmax

Large
Trains weights on layers
and softmax by initializing
weights on pre-trained ones

3.3.2 Optimizing convergence

r Learning rate – The learning rate, often noted α or sometimes η, indicates at which pace the
weights get updated. It can be fixed or adaptively changed. The current most popular method
is called Adam, which is a method that adapts the learning rate.

r Adaptive learning rates – Letting the learning rate vary when training a model can reduce
the training time and improve the numerical optimal solution. While Adam optimizer is the
most commonly used technique, others can also be useful. They are summed up in the table
below:

Method Explanation Update of w Update of b

Momentum
- Dampens oscillations
- Improvement to SGD
- 2 parameters to tune

w − αvdw b− αvdb

RMSprop
- Root Mean Square propagation
- Speeds up learning algorithm
by controlling oscillations

w − α
dw
√
sdw

b←− b− α
db
√
sdb

Adam
- Adaptive Moment estimation
- Most popular method
- 4 parameters to tune

w − α
vdw√
sdw + ε

b←− b− α
vdb√
sdb + ε

Remark: other methods include Adadelta, Adagrad and SGD.

3.4 Regularization

r Dropout – Dropout is a technique used in neural networks to prevent overfitting the training
data by dropping out neurons with probability p > 0. It forces the model to avoid relying too
much on particular sets of features.

Remark: most deep learning frameworks parametrize dropout through the ’keep’ parameter 1−p.

r Weight regularization – In order to make sure that the weights are not too large and that
the model is not overfitting the training set, regularization techniques are usually performed on
the model weights. The main ones are summed up in the table below:

LASSO Ridge Elastic Net

- Shrinks coefficients to 0
- Good for variable selection Makes coefficients smaller Tradeoff between variable

selection and small coefficients

...+ λ||θ||1
λ ∈ R

...+ λ||θ||22
λ ∈ R

...+ λ

[
(1− α)||θ||1 + α||θ||22

]
λ ∈ R,α ∈ [0,1]
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r Early stopping – This regularization technique stops the training process as soon as the
validation loss reaches a plateau or starts to increase.

3.5 Good practices

r Overfitting small batch – When debugging a model, it is often useful to make quick tests
to see if there is any major issue with the architecture of the model itself. In particular, in order
to make sure that the model can be properly trained, a mini-batch is passed inside the network
to see if it can overfit on it. If it cannot, it means that the model is either too complex or not
complex enough to even overfit on a small batch, let alone a normal-sized training set.

r Gradient checking – Gradient checking is a method used during the implementation of
the backward pass of a neural network. It compares the value of the analytical gradient to the
numerical gradient at given points and plays the role of a sanity-check for correctness.

Numerical gradient Analytical gradient

Formula df

dx
(x) ≈ f(x+ h)− f(x− h)

2h
df

dx
(x) = f ′(x)

Comments

- Expensive; loss has to be
computed two times per dimension
- Used to verify correctness
of analytical implementation
-Trade-off in choosing h
not too small (numerical instability)
nor too large (poor gradient approx.)

- ’Exact’ result

- Direct computation

- Used in the final implementation

? ? ?
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1 Reflex-based models

1.1 Linear predictors

In this section, we will go through reflex-based models that can improve with experience, by
going through samples that have input-output pairs.

r Feature vector – The feature vector of an input x is noted φ(x) and is such that:

φ(x) =

[
φ1(x)

...
φd(x)

]
∈ Rd

r Score – The score s(x,w) of an example (φ(x),y) ∈ Rd × R associated to a linear model of
weights w ∈ Rd is given by the inner product:

s(x,w) = w·φ(x)

1.1.1 Classification

r Linear classifier – Given a weight vector w ∈ Rd and a feature vector φ(x) ∈ Rd, the binary
linear classifier fw is given by:

fw(x) = sign(s(x,w)) =
{ +1 if w·φ(x) > 0
−1 if w·φ(x) < 0
? if w·φ(x) = 0

r Margin – The margin m(x,y,w) ∈ R of an example (φ(x),y) ∈ Rd × {−1,+ 1} associated to
a linear model of weights w ∈ Rd quantifies the confidence of the prediction: larger values are
better. It is given by:

m(x,y,w) = s(x,w)× y

1.1.2 Regression

r Linear regression – Given a weight vector w ∈ Rd and a feature vector φ(x) ∈ Rd, the
output of a linear regression of weights w denoted as fw is given by:

fw(x) = s(x,w)

r Residual – The residual res(x,y,w) ∈ R is defined as being the amount by which the prediction
fw(x) overshoots the target y:

res(x,y,w) = fw(x)− y

1.2 Loss minimization

r Loss function – A loss function Loss(x,y,w) quantifies how unhappy we are with the weights
w of the model in the prediction task of output y from input x. It is a quantity we want to
minimize during the training process.

r Classification case – The classification of a sample x of true label y ∈ {−1,+1} with a linear
model of weights w can be done with the predictor fw(x) , sign(s(x,w)). In this situation, a
metric of interest quantifying the quality of the classification is given by the margin m(x,y,w),
and can be used with the following loss functions:

Name Zero-one loss Hinge loss Logistic loss

Loss(x,y,w) 1{m(x,y,w)60} max(1−m(x,y,w), 0) log(1 + e−m(x,y,w))

Illustration

r Regression case – The prediction of a sample x of true label y ∈ R with a linear model of
weights w can be done with the predictor fw(x) , s(x,w). In this situation, a metric of interest
quantifying the quality of the regression is given by the margin res(x,y,w) and can be used with
the following loss functions:

Name Squared loss Absolute deviation loss

Loss(x,y,w) (res(x,y,w))2 |res(x,y,w)|

Illustration
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r Loss minimization framework – In order to train a model, we want to minimize the
training loss is defined as follows:

TrainLoss(w) = 1
|Dtrain|

∑
(x,y)∈Dtrain

Loss(x,y,w)

1.3 Non-linear predictors

r k-nearest neighbors – The k-nearest neighbors algorithm, commonly known as k-NN, is a
non-parametric approach where the response of a data point is determined by the nature of its
k neighbors from the training set. It can be used in both classification and regression settings.

Remark: the higher the parameter k, the higher the bias, and the lower the parameter k, the
higher the variance.

r Neural networks – Neural networks are a class of models that are built with layers. Com-
monly used types of neural networks include convolutional and recurrent neural networks. The
vocabulary around neural networks architectures is described in the figure below:

By noting i the ith layer of the network and j the jth hidden unit of the layer, we have:

z
[i]
j = w

[i]
j

T
x+ b

[i]
j

where we note w, b, x, z the weight, bias, input and non-activated output of the neuron respec-
tively.

1.4 Stochastic gradient descent

r Gradient descent – By noting η ∈ R the learning rate (also called step size), the update
rule for gradient descent is expressed with the learning rate and the loss function Loss(x,y,w) as
follows:

w ←− w − η∇wLoss(x,y,w)

r Stochastic updates – Stochastic gradient descent (SGD) updates the parameters of the
model one training example (φ(x),y) ∈ Dtrain at a time. This method leads to sometimes noisy,
but fast updates.

r Batch updates – Batch gradient descent (BGD) updates the parameters of the model one
batch of examples (e.g. the entire training set) at a time. This method computes stable update
directions, at a greater computational cost.

1.5 Fine-tuning models

r Hypothesis class – A hypothesis class F is the set of possible predictors with a fixed φ(x)
and varying w:

F =
{
fw : w ∈ Rd

}
r Logistic function – The logistic function σ, also called the sigmoid function, is defined as:

∀z ∈]−∞,+∞[, σ(z) = 1
1 + e−z

Remark: we have σ′(z) = σ(z)(1− σ(z)).

r Backpropagation – The forward pass is done through fi, which is the value for the subex-
pression rooted at i, while the backward pass is done through gi = ∂out

∂fi
and represents how fi

influences the output.

r Approximation and estimation error – The approximation error εapprox represents how
far the entire hypothesis class F is from the target predictor g∗, while the estimation error εest
quantifies how good the predictor f̂ is with respect to the best predictor f∗ of the hypothesis
class F .
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r Regularization – The regularization procedure aims at avoiding the model to overfit the
data and thus deals with high variance issues. The following table sums up the different types
of commonly used regularization techniques:

LASSO Ridge Elastic Net

- Shrinks coefficients to 0
- Good for variable selection Makes coefficients smaller Tradeoff between variable

selection and small coefficients

...+ λ||θ||1 ...+ λ||θ||22 ...+ λ

[
(1− α)||θ||1 + α||θ||22

]
λ ∈ R λ ∈ R λ ∈ R, α ∈ [0,1]

r Hyperparameters – Hyperparameters are the properties of the learning algorithm, and
include features, regularization parameter λ, number of iterations T , step size η, etc.

r Sets vocabulary – When selecting a model, we distinguish 3 different parts of the data that
we have as follows:

Training set Validation set Testing set

- Model is trained
- Usually 80 of the dataset

- Model is assessed
- Usually 20 of the dataset
- Also called hold-out

- Model gives predictions
- Unseen data
or development set

Once the model has been chosen, it is trained on the entire dataset and tested on the unseen
test set. These are represented in the figure below:

1.6 Unsupervised Learning

The class of unsupervised learning methods aims at discovering the structure of the data, which
may have of rich latent structures.

1.6.1 k-means

r Clustering – Given a training set of input points Dtrain, the goal of a clustering algorithm
is to assign each point φ(xi) to a cluster zi ∈ {1,...,k}.

r Objective function – The loss function for one of the main clustering algorithms, k-means,
is given by:

Lossk-means(x,µ) =
n∑
i=1

||φ(xi)− µzi ||
2

r Algorithm – After randomly initializing the cluster centroids µ1,µ2,...,µk ∈ Rn, the k-means
algorithm repeats the following step until convergence:

zi = arg min
j

||φ(xi)− µj ||2 and µj =

m∑
i=1

1{zi=j}φ(xi)

m∑
i=1

1{zi=j}

1.6.2 Principal Component Analysis

r Eigenvalue, eigenvector – Given a matrix A ∈ Rn×n, λ is said to be an eigenvalue of A if
there exists a vector z ∈ Rn\{0}, called eigenvector, such that we have:

Az = λz
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r Spectral theorem – Let A ∈ Rn×n. If A is symmetric, then A is diagonalizable by a real
orthogonal matrix U ∈ Rn×n. By noting Λ = diag(λ1,...,λn), we have:

∃Λ diagonal, A = UΛUT

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of
matrix A.

r Algorithm – The Principal Component Analysis (PCA) procedure is a dimension reduction
technique that projects the data on k dimensions by maximizing the variance of the data as
follows:

• Step 1: Normalize the data to have a mean of 0 and standard deviation of 1.

x
(i)
j ←

x
(i)
j − µj
σj

where µj = 1
m

m∑
i=1

x
(i)
j and σ2

j = 1
m

m∑
i=1

(x(i)
j − µj)

2

• Step 2: Compute Σ = 1
m

m∑
i=1

x(i)x(i)T ∈ Rn×n, which is symmetric with real eigenvalues.

• Step 3: Compute u1, ..., uk ∈ Rn the k orthogonal principal eigenvectors of Σ, i.e. the
orthogonal eigenvectors of the k largest eigenvalues.

• Step 4: Project the data on spanR(u1,...,uk). This procedure maximizes the variance
among all k-dimensional spaces.

2 States-based models

2.1 Search optimization

In this section, we assume that by accomplishing action a from state s, we deterministically
arrive in state Succ(s,a). The goal here is to determine a sequence of actions (a1,a2,a3,a4,...)
that starts from an initial state and leads to an end state. In order to solve this kind of problem,
our objective will be to find the minimum cost path by using states-based models.

2.1.1 Tree search

This category of states-based algorithms explores all possible states and actions. It is quite
memory efficient, and is suitable for huge state spaces but the runtime can become exponential
in the worst cases.

r Search problem – A search problem is defined with:

• a starting state sstart

• possible actions Actions(s) from state s

• action cost Cost(s,a) from state s with action a

• successor Succ(s,a) of state s after action a

• whether an end state was reached IsEnd(s)

The objective is to find a path that minimizes the cost.

r Backtracking search – Backtracking search is a naive recursive algorithm that tries all
possibilities to find the minimum cost path. Here, action costs can be either positive or negative.

r Breadth-first search (BFS) – Breadth-first search is a graph search algorithm that does a
level-by-level traversal. We can implement it iteratively with the help of a queue that stores at
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each step future nodes to be visited. For this algorithm, we can assume action costs to be equal
to a constant c > 0.

r Depth-first search (DFS) – Depth-first search is a search algorithm that traverses a graph
by following each path as deep as it can. We can implement it recursively, or iteratively with
the help of a stack that stores at each step future nodes to be visited. For this algorithm, action
costs are assumed to be equal to 0.

r Iterative deepening – The iterative deepening trick is a modification of the depth-first
search algorithm so that it stops after reaching a certain depth, which guarantees optimality
when all action costs are equal. Here, we assume that action costs are equal to a constant c > 0.

r Tree search algorithms summary – By noting b the number of actions per state, d the
solution depth, and D the maximum depth, we have:

Algorithm Action costs Space Time

Backtracking search any O(D) O(bD)

Breadth-first search c > 0 O(bd) O(bd)

Depth-first search 0 O(D) O(bD)

DFS-Iterative deepening c > 0 O(d) O(bd)

2.1.2 Graph search

This category of states-based algorithms aims at constructing optimal paths, enabling exponen-
tial savings. In this section, we will focus on dynamic programming and uniform cost search.

r Graph – A graph is comprised of a set of vertices V (also called nodes) as well as a set of
edges E (also called links).

Remark: a graph is said to be acylic when there is no cycle.

r State – A state is a summary of all past actions sufficient to choose future actions optimally.

r Dynamic programming – Dynamic programming (DP) is a backtracking search algorithm
with memoization (i.e. partial results are saved) whose goal is to find a minimum cost path from
state s to an end state send. It can potentially have exponential savings compared to traditional
graph search algorithms, and has the property to only work for acyclic graphs. For any given
state s, the future cost is computed as follows:

FutureCost(s) =
{ 0 if IsEnd(s)

min
a∈Actions(s)

[
Cost(s,a) + FutureCost(Succ(s,a))

]
otherwise

Remark: the figure above illustrates a bottom-to-top approach whereas the formula provides the
intuition of a top-to-bottom problem resolution.

r Types of states – The table below presents the terminology when it comes to states in the
context of uniform cost search:
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State Explanation

Explored E States for which the optimal path has
already been found

Frontier F States seen for which we are still figuring out
how to get there with the cheapest cost

Unexplored U States not seen yet

r Uniform cost search – Uniform cost search (UCS) is a search algorithm that aims at finding
the shortest path from a state sstart to an end state send. It explores states s in increasing order
of PastCost(s) and relies on the fact that all action costs are non-negative.

Remark 1: the UCS algorithm is logically equivalent to Djikstra’s algorithm.
Remark 2: the algorithm would not work for a problem with negative action costs, and adding a
positive constant to make them non-negative would not solve the problem since this would end
up being a different problem.

r Correctness theorem – When a state s is popped from the frontier F and moved to explored
set E, its priority is equal to PastCost(s) which is the minimum cost path from sstart to s.

r Graph search algorithms summary – By noting N the number of total states, n of which
are explored before the end state send, we have:

Algorithm Acyclicity Costs Time/space

Dynamic programming yes any O(N)

Uniform cost search no c > 0 O(n log(n))

Remark: the complexity countdown supposes the number of possible actions per state to be
constant.

2.1.3 Learning costs

Suppose we are not given the values of Cost(s,a), we want to estimate these quantities from a
training set of minimizing-cost-path sequence of actions (a1, a2, ..., ak).

r Structured perceptron – The structured perceptron is an algorithm aiming at iteratively
learning the cost of each state-action pair. At each step, it:

• decreases the estimated cost of each state-action of the true minimizing path y given by
the training data,

• increases the estimated cost of each state-action of the current predicted path y′ inferred
from the learned weights.

Remark: there are several versions of the algorithm, one of which simplifies the problem to only
learning the cost of each action a, and the other parametrizes Cost(s,a) to a feature vector of
learnable weights.

2.1.4 A? search

r Heuristic function – A heuristic is a function h over states s, where each h(s) aims at
estimating FutureCost(s), the cost of the path from s to send.

r Algorithm – A∗ is a search algorithm that aims at finding the shortest path from a state s to
an end state send. It explores states s in increasing order of PastCost(s) + h(s). It is equivalent
to a uniform cost search with edge costs Cost′(s,a) given by:

Cost′(s,a) = Cost(s,a) + h(Succ(s,a))− h(s)

Remark: this algorithm can be seen as a biased version of UCS exploring states estimated to be
closer to the end state.

r Consistency – A heuristic h is said to be consistent if it satisfies the two following properties:

• For all states s and actions a,

h(s) 6 Cost(s,a) + h(Succ(s,a))

• The end state verifies the following:

h(send) = 0
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r Correctness – If h is consistent, then A∗ returns the minimum cost path.

r Admissibility – A heuristic h is said to be admissible if we have:

h(s) 6 FutureCost(s)

r Theorem – Let h(s) be a given heuristic. We have:

h(s) consistent =⇒ h(s) admissible

r Efficiency – A∗ explores all states s satisfying the following equation:

PastCost(s) 6 PastCost(send)− h(s)

Remark: larger values of h(s) is better as this equation shows it will restrict the set of states s
going to be explored.

2.1.5 Relaxation

It is a framework for producing consistent heuristics. The idea is to find closed-form reduced
costs by removing constraints and use them as heuristics.

r Relaxed search problem – The relaxation of search problem P with costs Cost is noted
Prel with costs Costrel, and satisfies the identity:

Costrel(s,a) 6 Cost(s,a)

r Relaxed heuristic – Given a relaxed search problem Prel, we define the relaxed heuristic
h(s) = FutureCostrel(s) as the minimum cost path from s to an end state in the graph of costs
Costrel(s,a).

r Consistency of relaxed heuristics – Let Prel be a given relaxed problem. By theorem, we
have:

h(s) = FutureCostrel(s) =⇒ h(s) consistent

r Tradeoff when choosing heuristic – We have to balance two aspects in choosing a heuristic:

• Computational efficiency: h(s) = FutureCostrel(s) must be easy to compute. It has to
produce a closed form, easier search and independent subproblems.

• Good enough approximation: the heuristic h(s) should be close to FutureCost(s) and we
have thus to not remove too many constraints.

r Max heuristic – Let h1(s), h2(s) be two heuristics. We have the following property:

h1(s), h2(s) consistent =⇒ h(s) = max{h1(s), h2(s)} consistent

2.2 Markov decision processes

In this section, we assume that performing action a from state s can lead to several states s′1,s′2,...
in a probabilistic manner. In order to find our way between an initial state and an end state,
our objective will be to find the maximum value policy by using Markov decision processes that
help us cope with randomness and uncertainty.

2.2.1 Notations

r Definition – The objective of a Markov decision process is to maximize rewards. It is defined
with:

• a starting state sstart

• possible actions Actions(s) from state s

• transition probabilities T (s,a,s′) from s to s′ with action a

• rewards Reward(s,a,s′) from s to s′ with action a

• whether an end state was reached IsEnd(s)

• a discount factor 0 6 γ 6 1

r Transition probabilities – The transition probability T (s,a,s′) specifies the probability
of going to state s′ after action a is taken in state s. Each s′ 7→ T (s,a,s′) is a probability
distribution, which means that:

∀s,a,
∑

s′∈ States

T (s,a,s′) = 1

r Policy – A policy π is a function that maps each state s to an action a, i.e.
π : s 7→ a

r Utility – The utility of a path (s0, ..., sk) is the discounted sum of the rewards on that path.
In other words,
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u(s0,...,sk) =
k∑
i=1

riγ
i−1

Remark: the figure above is an illustration of the case k = 4.

r Q-value – The Q-value of a policy π by taking action a from state s, also noted Qπ(s,a), is
the expected utility of taking action a from state s and then following policy π. It is defined as
follows:

Qπ(s,a) =
∑

s′∈ States

T (s,a,s′)
[
Reward(s,a,s′) + γVπ(s′)

]
r Value of a policy – The value of a policy π from state s, also noted Vπ(s), is the expected
utility by following policy π from state s over random paths. It is defined as follows:

Vπ(s) = Qπ(s,π(s))

Remark: Vπ(s) is equal to 0 if s is an end state.

2.2.2 Applications

r Policy evaluation – Given a policy π, policy evaluation is an iterative algorithm that com-
putes Vπ . It is done as follows:

• Initialization: for all states s, we have

V
(0)
π (s)←− 0

• Iteration: for t from 1 to TPE, we have

∀s, V
(t)
π (s)←− Q(t−1)

π (s,π(s))

with

Q
(t−1)
π (s,π(s)) =

∑
s′∈ States

T (s,π(s),s′)
[
Reward(s,π(s),s′) + γV

(t−1)
π (s′)

]

Remark: by noting S the number of states, A the number of actions per state, S′ the number
of successors and T the number of iterations, then the time complexity is of O(TPESS

′).

r Optimal Q-value – The optimal Q-value Qopt(s,a) of state s with action a is defined to be
the maximum Q-value attained by any policy starting. It is computed as follows:

Qopt(s,a) =
∑

s′∈ States

T (s,a,s′)
[
Reward(s,a,s′) + γVopt(s′)

]
r Optimal value – The optimal value Vopt(s) of state s is defined as being the maximum value
attained by any policy. It is computed as follows:

Vopt(s) = max
a∈ Actions(s)

Qopt(s,a)

r Optimal policy – The optimal policy πopt is defined as being the policy that leads to the
optimal values. It is defined by:

∀s, πopt(s) = argmax
a∈ Actions(s)

Qopt(s,a)

r Value iteration – Value iteration is an algorithm that finds the optimal value Vopt as well
as the optimal policy πopt. It is done as follows:

• Initialization: for all states s, we have

V
(0)

opt (s)←− 0

• Iteration: for t from 1 to TVI, we have

∀s, V
(t)

opt(s)←− max
a∈ Actions(s)

Q
(t−1)
opt (s,a)

with

Q
(t−1)
opt (s,a) =

∑
s′∈ States

T (s,a,s′)
[
Reward(s,a,s′) + γV

(t−1)
opt (s′)

]

Remark: if we have either γ < 1 or the MDP graph being acyclic, then the value iteration
algorithm is guaranteed to converge to the correct answer.

2.2.3 When unknown transitions and rewards

Now, let’s assume that the transition probabilities and the rewards are unknown.

r Model-based Monte Carlo – The model-based Monte Carlo method aims at estimating
T (s,a,s′) and Reward(s,a,s′) using Monte Carlo simulation with:

T̂ (s,a,s′) = # times (s,a,s′) occurs
# times (s,a) occurs

and

R̂eward(s,a,s′) = r in (s,a,r,s′)

These estimations will be then used to deduce Q-values, including Qπ and Qopt.
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Remark: model-based Monte Carlo is said to be off-policy, because the estimation does not
depend on the exact policy.

r Model-free Monte Carlo – The model-free Monte Carlo method aims at directly estimating
Qπ , as follows:

Q̂π(s,a) = average of ut where st−1 = s, at = a

where ut denotes the utility starting at step t of a given episode.
Remark: model-free Monte Carlo is said to be on-policy, because the estimated value is dependent
on the policy π used to generate the data.

r Equivalent formulation – By introducing the constant η = 1
1+(#updates to (s,a)) and for

each (s,a,u) of the training set, the update rule of model-free Monte Carlo has a convex combi-
nation formulation:

Q̂π(s,a)← (1− η)Q̂π(s,a) + ηu

as well as a stochastic gradient formulation:

Q̂π(s,a)← Q̂π(s,a)− η(Q̂π(s,a)− u)

r SARSA – State-action-reward-state-action (SARSA) is a boostrapping method estimating
Qπ by using both raw data and estimates as part of the update rule. For each (s,a,r,s′,a′), we
have:

Q̂π(s,a)←− (1− η)Q̂π(s,a) + η

[
r + γQ̂π(s′,a′)

]
Remark: the SARSA estimate is updated on the fly as opposed to the model-free Monte Carlo
one where the estimate can only be updated at the end of the episode.

r Q-learning – Q-learning is an off-policy algorithm that produces an estimate for Qopt. On
each (s,a,r,s′,a′), we have:

Q̂opt(s,a)← (1− η)Q̂opt(s,a) + η

[
r + γ max

a′∈ Actions(s′)
Q̂opt(s′,a′)

]
r Epsilon-greedy – The epsilon-greedy policy is an algorithm that balances exploration with
probability ε and exploitation with probability 1 − ε. For a given state s, the policy πact is
computed as follows:

πact(s) =
{

argmax
a∈ Actions

Q̂opt(s,a) with proba 1− ε

random from Actions(s) with proba ε

2.3 Game playing

In games (e.g. chess, backgammon, Go), other agents are present and need to be taken into
account when constructing our policy.

r Game tree – A game tree is a tree that describes the possibilities of a game. In particular,
each node is a decision point for a player and each root-to-leaf path is a possible outcome of the
game.

r Two-player zero-sum game – It is a game where each state is fully observed and such that
players take turns. It is defined with:

• a starting state sstart

• possible actions Actions(s) from state s

• successors Succ(s,a) from states s with actions a

• whether an end state was reached IsEnd(s)

• the agent’s utility Utility(s) at end state s

• the player Player(s) who controls state s

Remark: we will assume that the utility of the agent has the opposite sign of the one of the
opponent.

r Types of policies – There are two types of policies:

• Deterministic policies, noted πp(s), which are actions that player p takes in state s.

• Stochastic policies, noted πp(s,a) ∈ [0,1], which are probabilities that player p takes action
a in state s.

r Expectimax – For a given state s, the expectimax value Vexptmax(s) is the maximum expected
utility of any agent policy when playing with respect to a fixed and known opponent policy πopp.
It is computed as follows:

Vexptmax(s) =


Utility(s) IsEnd(s)

max
a∈Actions(s)

Vexptmax(Succ(s,a)) Player(s) = agent∑
a∈Actions(s)

πopp(s,a)Vexptmax(Succ(s,a)) Player(s) = opp

Remark: expectimax is the analog of value iteration for MDPs.

r Minimax – The goal of minimax policies is to find an optimal policy against an adversary
by assuming the worst case, i.e. that the opponent is doing everything to minimize the agent’s
utility. It is done as follows:

Vminimax(s) =


Utility(s) IsEnd(s)

max
a∈Actions(s)

Vminimax(Succ(s,a)) Player(s) = agent

min
a∈Actions(s)

Vminimax(Succ(s,a)) Player(s) = opp
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Remark: we can extract πmax and πmin from the minimax value Vminimax.

r Minimax properties – By noting V the value function, there are 3 properties around
minimax to have in mind:

• Property 1 : if the agent were to change its policy to any πagent, then the agent would be
no better off.

∀πagent, V (πmax,πmin) > V (πagent,πmin)

• Property 2 : if the opponent changes its policy from πmin to πopp, then he will be no
better off.

∀πopp, V (πmax,πmin) 6 V (πmax,πopp)

• Property 3 : if the opponent is known to be not playing the adversarial policy, then the
minimax policy might not be optimal for the agent.

∀π, V (πmax,π) 6 V (πexptmax,π)

In the end, we have the following relationship:

V (πexptmax,πmin) 6 V (πmax,πmin) 6 V (πmax,π) 6 V (πexptmax,π)

2.3.1 Speeding up minimax

r Evaluation function – An evaluation function is a domain-specific and approximate estimate
of the value Vminimax(s). It is noted Eval(s).

Remark: FutureCost(s) is an analogy for search problems.

r Alpha-beta pruning – Alpha-beta pruning is a domain-general exact method optimizing
the minimax algorithm by avoiding the unnecessary exploration of parts of the game tree. To do
so, each player keeps track of the best value they can hope for (stored in α for the maximizing
player and in β for the minimizing player). At a given step, the condition β < α means that the
optimal path is not going to be in the current branch as the earlier player had a better option
at their disposal.

r TD learning – Temporal difference (TD) learning is used when we don’t know the transi-
tions/rewards. The value is based on exploration policy. To be able to use it, we need to know
rules of the game Succ(s,a). For each (s,a,r,s′), the update is done as follows:

w ←− w − η
[
V (s,w)− (r + γV (s′,w))

]
∇wV (s,w)

2.3.2 Simultaneous games

This is the contrary of turn-based games, where there is no ordering on the player’s moves.

r Single-move simultaneous game – Let there be two players A and B, with given possible
actions. We note V (a,b) to be A’s utility if A chooses action a, B chooses action b. V is called
the payoff matrix.

r Strategies – There are two main types of strategies:

• A pure strategy is a single action:

a ∈ Actions

• A mixed strategy is a probability distribution over actions:

∀a ∈ Actions, 0 6 π(a) 6 1

r Game evaluation – The value of the game V (πA,πB) when player A follows πA and player
B follows πB is such that:

V (πA,πB) =
∑
a,b

πA(a)πB(b)V (a,b)

r Minimax theorem – By noting πA,πB ranging over mixed strategies, for every simultaneous
two-player zero-sum game with a finite number of actions, we have:

max
πA

min
πB

V (πA,πB) = min
πB

max
πA

V (πA,πB)
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2.3.3 Non-zero-sum games

r Payoff matrix – We define Vp(πA,πB) to be the utility for player p.

r Nash equilibrium – A Nash equilibrium is (π∗A,π
∗
B) such that no player has an incentive to

change its strategy. We have:

∀πA, VA(π∗A,π
∗
B) > VA(πA,π∗B) and ∀πB , VB(π∗A,π

∗
B) > VB(π∗A,πB)

Remark: in any finite-player game with finite number of actions, there exists at least one Nash
equilibrium.

3 Variables-based models

3.1 Constraint satisfaction problems

In this section, our objective is to find maximum weight assignments of variable-based models.
One advantage compared to states-based models is that these algorithms are more convenient
to encode problem-specific constraints.

3.1.1 Factor graphs

r Definition – A factor graph, also referred to as a Markov random field, is a set of variables
X = (X1,...,Xn) where Xi ∈ Domaini and m factors f1,...,fm with each fj(X) > 0.

r Scope and arity – The scope of a factor fj is the set of variables it depends on. The size of
this set is called the arity.
Remark: factors of arity 1 and 2 are called unary and binary respectively.

r Assignment weight – Each assignment x = (x1,...,xn) yields a weight Weight(x) defined as
being the product of all factors fj applied to that assignment. Its expression is given by:

Weight(x) =
m∏
j=1

fj(x)

r Constraint satisfaction problem – A constraint satisfaction problem (CSP) is a factor
graph where all factors are binary; we call them to be constraints:

∀j ∈ [[1,m]], fj(x) ∈ {0,1}

Here, the constraint j with assignment x is said to be satisfied if and only if fj(x) = 1.

r Consistent assignment – An assignment x of a CSP is said to be consistent if and only if
Weight(x) = 1, i.e. all constraints are satisfied.

3.1.2 Dynamic ordering

r Dependent factors – The set of dependent factors of variable Xi with partial assignment x
is called D(x,Xi), and denotes the set of factors that link Xi to already assigned variables.
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r Backtracking search – Backtracking search is an algorithm used to find maximum weight
assignments of a factor graph. At each step, it chooses an unassigned variable and explores
its values by recursion. Dynamic ordering (i.e. choice of variables and values) and lookahead
(i.e. early elimination of inconsistent options) can be used to explore the graph more efficiently,
although the worst-case runtime stays exponential: O(|Domain|n).

r Forward checking – It is a one-step lookahead heuristic that preemptively removes incon-
sistent values from the domains of neighboring variables. It has the following characteristics:

• After assigning a variable Xi, it eliminates inconsistent values from the domains of all its
neighbors.

• If any of these domains becomes empty, we stop the local backtracking search.
• If we un-assign a variable Xi, we have to restore the domain of its neighbors.

r Most constrained variable – It is a variable-level ordering heuristic that selects the next
unassigned variable that has the fewest consistent values. This has the effect of making incon-
sistent assignments to fail earlier in the search, which enables more efficient pruning.

r Least constrained value – It is a value-level ordering heuristic that assigns the next value
that yields the highest number of consistent values of neighboring variables. Intuitively, this
procedure chooses first the values that are most likely to work.
Remark: in practice, this heuristic is useful when all factors are constraints.

The example above is an illustration of the 3-color problem with backtracking search coupled
with most constrained variable exploration and least constrained value heuristic, as well as
forward checking at each step.

r Arc consistency – We say that arc consistency of variable Xl with respect to Xk is enforced
when for each xl ∈ Domainl:

• unary factors of Xl are non-zero,
• there exists at least one xk ∈ Domaink such that any factor between Xl and Xk is

non-zero.

r AC-3 – The AC-3 algorithm is a multi-step lookahead heuristic that applies forward checking
to all relevant variables. After a given assignment, it performs forward checking and then
successively enforces arc consistency with respect to the neighbors of variables for which the
domain change during the process.
Remark: AC-3 can be implemented both iteratively and recursively.

3.1.3 Approximate methods

r Beam search – Beam search is an approximate algorithm that extends partial assignments
of n variables of branching factor b = |Domain| by exploring the K top paths at each step. The
beam size K ∈ {1,...,bn} controls the tradeoff between efficiency and accuracy. This algorithm
has a time complexity of O(n·Kb log(Kb)).
The example below illustrates a possible beam search of parameters K = 2, b = 3 and n = 5.

Remark: K = 1 corresponds to greedy search whereas K → +∞ is equivalent to BFS tree search.

r Iterated conditional modes – Iterated conditional modes (ICM) is an iterative approximate
algorithm that modifies the assignment of a factor graph one variable at a time until convergence.
At step i, we assign to Xi the value v that maximizes the product of all factors connected to
that variable.
Remark: ICM may get stuck in local minima.

r Gibbs sampling – Gibbs sampling is an iterative approximate method that modifies the
assignment of a factor graph one variable at a time until convergence. At step i:

• we assign to each element u ∈ Domaini a weight w(u) that is the product of all factors
connected to that variable,

• we sample v from the probability distribution induced by w and assign it to Xi.

Remark: Gibbs sampling can be seen as the probabilistic counterpart of ICM. It has the advan-
tage to be able to escape local minima in most cases.

3.1.4 Factor graph transformations

r Independence – Let A,B be a partitioning of the variables X. We say that A and B are
independent if there are no edges between A and B and we write:

A,B independent ⇐⇒ A ⊥⊥ B

Remark: independence is the key property that allows us to solve subproblems in parallel.

r Conditional independence – We say that A and B are conditionally independent given C
if conditioning on C produces a graph in which A and B are independent. In this case, it is
written:
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A and B cond. indep. given C ⇐⇒ A ⊥⊥ B|C

r Conditioning – Conditioning is a transformation aiming at making variables independent
that breaks up a factor graph into smaller pieces that can be solved in parallel and can use
backtracking. In order to condition on a variable Xi = v, we do as follows:

• Consider all factors f1,...,fk that depend on Xi

• Remove Xi and f1,...,fk

• Add gj(x) for j ∈ {1,...,k} defined as:

gj(x) = fj(x ∪ {Xi : v})

r Markov blanket – Let A ⊆ X be a subset of variables. We define MarkovBlanket(A) to be
the neighbors of A that are not in A.

r Proposition – Let C = MarkovBlanket(A) and B = X\(A ∪ C). Then we have:
A ⊥⊥ B|C

r Elimination – Elimination is a factor graph transformation that removes Xi from the graph
and solves a small subproblem conditioned on its Markov blanket as follows:

• Consider all factors fi,1,...,fi,k that depend on Xi

• Remove Xi and fi,1,...,fi,k

• Add fnew,i(x) defined as:

fnew,i(x) = max
xi

k∏
l=1

fi,l(x)

r Treewidth – The treewidth of a factor graph is the maximum arity of any factor created by
variable elimination with the best variable ordering. In other words,

Treewidth = min
orderings

max
i∈{1,...,n}

arity(fnew,i)

The example below illustrates the case of a factor graph of treewidth 3.

Remark: finding the best variable ordering is a NP-hard problem.

3.2 Bayesian networks

In this section, our goal will be to compute conditional probabilities. What is the probability of
a query given evidence?

3.2.1 Introduction

r Explaining away – Suppose causes C1 and C2 influence an effect E. Conditioning on the
effect E and on one of the causes (say C1) changes the probability of the other cause (say C2).
In this case, we say that C1 has explained away C2.

r Directed acyclic graph – A directed acyclic graph (DAG) is a finite directed graph with
no directed cycles.

r Bayesian network – A Bayesian network is a directed acyclic graph (DAG) that specifies
a joint distribution over random variables X = (X1,...,Xn) as a product of local conditional
distributions, one for each node:

P (X1 = x1,...,Xn = xn) ,

n∏
i=1

p(xi|xParents(i))

Remark: Bayesian networks are factor graphs imbued with the language of probability.

r Locally normalized – For each xParents(i), all factors are local conditional distributions.
Hence they have to satisfy:
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∑
xi

p(xi|xParents(i)) = 1

As a result, sub-Bayesian networks and conditional distributions are consistent.

Remark: local conditional distributions are the true conditional distributions.

r Marginalization – The marginalization of a leaf node yields a Bayesian network without
that node.

3.2.2 Probabilistic programs

r Concept – A probabilistic program randomizes variables assignment. That way, we can write
down complex Bayesian networks that generate assignments without us having to explicitly
specify associated probabilities.

Remark: examples of probabilistic programs include Hidden Markov model (HMM), factorial
HMM, naive Bayes, latent Dirichlet allocation, diseases and symptoms and stochastic block
models.

r Summary – The table below summarizes the common probabilistic programs as well as their
applications:

Program Algorithm Illustration Example

Markov Model Xi ∼ p(Xi|Xi−1) Language
modeling

Hidden Markov
Model (HMM)

Ht ∼ p(Ht|Ht−1)
Et ∼ p(Et|Ht)

Object tracking

Factorial HMM
Ho
t ∼
o∈{a,b}

p(Ho
t |Ho

t−1)

Et ∼ p(Et|Ha
t ,H

b
t )

Multiple object
tracking

Naive Bayes
Y ∼ p(Y )
Wi ∼ p(Wi|Y )

Document
classification

Latent Dirichlet
Allocation (LDA)

α ∈ RK distribution
Zi ∼ p(Zi|α)
Wi ∼ p(Wi|Zi)

Topic modeling

3.2.3 Inference

r General probabilistic inference strategy – The strategy to compute the probability
P (Q|E = e) of query Q given evidence E = e is as follows:

• Step 1: Remove variables that are not ancestors of the query Q or the evidence E by
marginalization

• Step 2: Convert Bayesian network to factor graph

• Step 3: Condition on the evidence E = e

• Step 4: Remove nodes disconnected from the query Q by marginalization

• Step 5: Run probabilistic inference algorithm (manual, variable elimination, Gibbs sam-
pling, particle filtering)

r Forward-backward algorithm – This algorithm computes the exact value of P (H = hk|E =
e) (smoothing query) for any k ∈ {1, ..., L} in the case of an HMM of size L. To do so, we proceed
in 3 steps:

• Step 1: for i ∈ {1,..., L}, compute Fi(hi) =
∑

hi−1
Fi−1(hi−1)p(hi|hi−1)p(ei|hi)

• Step 2: for i ∈ {L,..., 1}, compute Bi(hi) =
∑

hi+1
Bi+1(hi+1)p(hi+1|hi)p(ei+1|hi+1)

• Step 3: for i ∈ {1,...,L}, compute Si(hi) = Fi(hi)Bi(hi)∑
hi
Fi(hi)Bi(hi)

Stanford University 15 Spring 2019



CS 221 – Artificial Intelligence Afshine Amidi & Shervine Amidi

with the convention F0 = BL+1 = 1. From this procedure and these notations, we get that
P (H = hk|E = e) = Sk(hk)

Remark: this algorithm interprets each assignment to be a path where each edge hi−1 → hi is
of weight p(hi|hi−1)p(ei|hi).

r Gibbs sampling – This algorithm is an iterative approximate method that uses a small set of
assignments (particles) to represent a large probability distribution. From a random assignment
x, Gibbs sampling performs the following steps for i ∈ {1,...,n} until convergence:

• For all u ∈ Domaini, compute the weight w(u) of assignment x where Xi = u

• Sample v from the probability distribution induced by w: v ∼ P (Xi = v|X−i = x−i)

• Set Xi = v

Remark: X−i denotes X\{Xi} and x−i represents the corresponding assignment.

r Particle filtering – This algorithm approximates the posterior density of state variables
given the evidence of observation variables by keeping track of K particles at a time. Starting
from a set of particles C of size K, we run the following 3 steps iteratively:

• Step 1: proposal - For each old particle xt−1 ∈ C, sample x from the transition probability
distribution p(x|xt−1) and add x to a set C′.

• Step 2: weighting - Weigh each x of the set C′ by w(x) = p(et|x), where et is the evidence
observed at time t.

• Step 3: resampling - Sample K elements from the set C′ using the probability distribution
induced by w and store them in C: these are the current particles xt.

Remark: a more expensive version of this algorithm also keeps track of past particles in the
proposal step.

r Maximum likelihood – If we don’t know the local conditional distributions, we can learn
them using maximum likelihood.

max
θ

∏
x∈Dtrain

p(X = x; θ)

r Laplace smoothing – For each distribution d and partial assignment (xParents(i),xi), add λ
to countd(xParents(i),xi), then normalize to get probability estimates.

r Algorithm – The Expectation-Maximization (EM) algorithm gives an efficient method at
estimating the parameter θ through maximum likelihood estimation by repeatedly constructing
a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

• E-step: Evaluate the posterior probability q(h) that each data point e came from a
particular cluster h as follows:

q(h) = P (H = h|E = e; θ)

• M-step: Use the posterior probabilities q(h) as cluster specific weights on data points e
to determine θ through maximum likelihood.

4 Logic-based models

4.1 Basics

r Syntax of propositional logic – By noting f,g formulas, and ¬,∧,∨,→,↔ connectives, we
can write the following logical expressions:

Name Symbol Meaning Illustration

Affirmation f f

Negation ¬f not f

Conjunction f ∧ g f and g

Disjunction f ∨ g f or g

Implication f → g if f then g

Biconditional f ↔ g f , that is to say g

Remark: formulas can be built up recursively out of these connectives.

r Model – A model w denotes an assignment of binary weights to propositional symbols.
Example: the set of truth values w = {A : 0,B : 1,C : 0} is one possible model to the propositional
symbols A, B and C.

r Interpretation function – The interpretation function I(f,w) outputs whether model w
satisfies formula f :

I(f,w) ∈ {0,1}

r Set of models –M(f) denotes the set of models w that satisfy formula f . Mathematically
speaking, we define it as follows:

Stanford University 16 Spring 2019



CS 221 – Artificial Intelligence Afshine Amidi & Shervine Amidi

∀w ∈M(f), I(f,w) = 1

4.2 Knowledge base

r Definition – The knowledge base KB is the conjunction of all formulas that have been
considered so far. The set of models of the knowledge base is the intersection of the set of
models that satisfy each formula. In other words:

M(KB) =
⋂
f∈KB

M(f)

r Probabilistic interpretation – The probability that query f is evaluated to 1 can be seen
as the proportion of models w of the knowledge base KB that satisfy f , i.e.:

P (f |KB) =

∑
w∈M(KB)∩M(f)

P (W = w)∑
w∈M(KB)

P (W = w)

r Satisfiability – The knowledge base KB is said to be satisfiable if at least one model w
satisfies all its constraints. In other words:

KB satisfiable ⇐⇒M(KB) 6= ∅

Remark: M(KB) denotes the set of models compatible with all the constraints of the knowledge
base.

r Relation between formulas and knowledge base – We define the following properties
between the knowledge base KB and a new formula f :

Name Mathematical formulation Illustration Notes

KB
entails f M(KB) ∩M(f) =M(KB)

- f does not bring any
new information
- Also written KB |= f

KB
contradicts f M(KB) ∩M(f) = ∅

- No model satisfies
the constraints after
adding f
Equivalent to KB |= ¬f

f contingent
to KB

M(KB) ∩M(f) 6= ∅
and

M(KB) ∩M(f) 6=M(KB)

- f does not contradict
KB
- f adds a non-trivial
amount of information
to KB

r Model checking – A model checking algorithm takes as input a knowledge base KB and
outputs whether it is satisfiable or not.
Remark: popular model checking algorithms include DPLL and WalkSat.

r Inference rule – An inference rule of premises f1,...,fk and conclusion g is written:

f1,...,fk
g

r Forward inference algorithm – From a set of inference rules Rules, this algorithm goes
through all possible f1,...,fk and adds g to the knowledge base KB if a matching rule exists.
This process is repeated until no more additions can be made to KB.

r Derivation – We say that KB derives f (written KB ` f) with rules Rules if f already is in
KB or gets added during the forward inference algorithm using the set of rules Rules.

r Properties of inference rules – A set of inference rules Rules can have the following
properties:

Name Mathematical formulation Notes

Soundness {f : KB ` f} ⊆ {f : KB |= f}

- Inferred formulas are entailed by
KB
- Can be checked one rule at a time
- "Nothing but the truth"

Completeness {f : KB ` f} ⊇ {f : KB |= f}

- Formulas entailing KB are either
already in the knowledge base or
inferred from it
- "The whole truth"
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4.3 Propositional logic

In this section, we will go through logic-based models that use logical formulas and inference
rules. The idea here is to balance expressivity and computational efficiency.

r Horn clause – By noting p1,...,pk and q propositional symbols, a Horn clause has the form:
(p1 ∧ ... ∧ pk) −→ q

Remark: when q = false, it is called a "goal clause", otherwise we denote it as a "definite
clause".

r Modus ponens inference rule – For propositional symbols f1,...,fk and p, the modus
ponens rule is written:

f1,...,fk, (f1 ∧ ... ∧ fk) −→ p

p

Remark: it takes linear time to apply this rule, as each application generate a clause that
contains a single propositional symbol.

r Completeness – Modus ponens is complete with respect to Horn clauses if we suppose that
KB contains only Horn clauses and p is an entailed propositional symbol. Applying modus
ponens will then derive p.

r Conjunctive normal form – A conjunctive normal form (CNF) formula is a conjunction of
clauses, where each clause is a disjunction of atomic formulas.
Remark: in other words, CNFs are ∧ of ∨.

r Equivalent representation – Every formula in propositional logic can be written into an
equivalent CNF formula. The table below presents general conversion properties:

Rule name Initial Converted

Eliminate

↔ f ↔ g (f → g) ∧ (g → f)

→ f → g ¬f ∨ g

¬¬ ¬¬f f

Distribute

¬ over ∧ ¬(f ∧ g) ¬f ∨ ¬g

¬ over ∨ ¬(f ∨ g) ¬f ∧ ¬g

∨ over ∧ f ∨ (g ∧ h) (f ∨ g) ∧ (f ∨ h)

r Resolution inference rule – For propositional symbols f1,...,fn, and g1,...,gm as well as p,
the resolution rule is written:

f1 ∨ ... ∨ fn ∨ p, ¬p ∨ g1 ∨ ... ∨ gm
f1 ∨ ... ∨ fn ∨ g1 ∨ ... ∨ gm

Remark: it can take exponential time to apply this rule, as each application generates a clause
that has a subset of the propositional symbols.

r Resolution-based inference – The resolution-based inference algorithm follows the follow-
ing steps:

• Step 1: Convert all formulas into CNF

• Step 2: Repeatedly apply resolution rule

• Step 3: Return unsatisfiable if and only if False is derived

4.4 First-order logic

The idea here is that variables yield compact knowledge representations.

r Model – A model w in first-order logic maps:

• constant symbols to objects

• predicate symbols to tuple of objects

r Horn clause – By noting x1,...,xn variables and a1,...,ak,b atomic formulas, the first-order
logic version of a horn clause has the form:

∀x1,...,∀xn, (a1 ∧ ... ∧ ak)→ b

r Substitution – A substitution θ maps variables to terms and Subst(θ,f) denotes the result
of substitution θ on f .

r Unification – Unification takes two formulas f and g and returns the most general substitu-
tion θ that makes them equal:

Unify[f,g] = θ s.t. Subst[θ,f ] = Subst[θ,g]

Note: Unify[f,g] returns Fail if no such θ exists.

r Modus ponens – By noting x1,...,xn variables, a1,...,ak and a′1,...,a′k atomic formulas and
by calling θ = Unify(a′1 ∧ ...∧ a′k, a1 ∧ ...∧ ak) the first-order logic version of modus ponens can
be written:

a′1,...,a
′
k ∀x1,...,∀xn(a1 ∧ ... ∧ ak)→ b

Subst[θ, b]

r Completeness – Modus ponens is complete for first-order logic with only Horn clauses.

r Resolution rule – By noting f1, ..., fn, g1, ..., gm, p, q formulas and by calling θ = Unify(p,q),
the first-order logic version of the resolution rule can be written:

f1 ∨ ... ∨ fn ∨ p, ¬q ∨ g1 ∨ ... ∨ gm
Subst[θ,f1 ∨ ... ∨ fn ∨ g1 ∨ ... ∨ gm]

r Semi-decidability – First-order logic, even restricted to only Horn clauses, is semi-decidable.

• if KB |= f , forward inference on complete inference rules will prove f in finite time

• if KB 6|= f , no algorithm can show this in finite time
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