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AI  vs  ML  vs  DL

Machine Learning is a subset of 
Artificial Intelligence

Deep Learning is a subset of 
Machine Learning



What is Artificial Intelligence?

Artificial Intelligence is a branch of Computer Science that is 
concerned with building smart & intelligent Machines

Non – intelligent machines Intelligent machines



Machine Learning

Machine Learning is a technique to implement AI that can learn 
from the data by themselves without being explicitly 
programmed.

Iron Man Captain America



Deep Learning

Deep Learning is a subfield of Machine Learning that uses 
Artificial Neural Networks to learn from the data.
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Machine Learning

Machine Learning is a technique to implement AI that can learn 
from the data by themselves without being explicitly 
programmed.



Types of Machine Learning

Machine Learning

Supervised Learning Unsupervised Learning Reinforcement Learning



Supervised Learning

In Supervised Learning, the Machine Learning algorithm 
learns from Labelled Data

Apples

Mangoes

ML model

Unknown Image

Apple



Unsupervised Learning

In Unsupervised Learning, the Machine Learning 
algorithm learns from Unlabelled Data

ML model

Group 1

Group 2



Reinforcement Learning

Reinforcement Learning is an area of Machine Learning concerned with how 
intelligent agents take actions in an environment to maximize its rewards.

1. Environment
2. Agent
3. Action
4. Reward

Agent

Environment



Supervised 
Learning:
Classification &
Regression



Supervised Learning

In Supervised Learning, the Machine Learning algorithm 
learns from Labelled Data

Apples

Mangoes

ML model

Unknown Image

Apple



Types of Supervised Learning

Supervised Learning

Classification Regression

Classification is about predicting 
a class or discrete values
Eg: Male or Female; True or 
False

Regression is about predicting a 
quantity or continuous values
Eg: Salary; age; Price.



Types of Supervised Learning

Classification:

Regression:

(Dog or Cat)

Rainfall in cm

Rainfall in cmTemperature

Dog Cat



Algorithms

Classification:

Regression:

1. Decision Tree Classification
2. Random Forest Classification
3. K-nearest Neighbor
4. Logistic Regression

1. Polynomial Regression
2. Support Vector Machines Regressor



Unsupervised 
Learning:
Clustering &
Association



Unsupervised Learning

In Unsupervised Learning, the Machine Learning 
algorithm learns from Unlabelled Data

ML model

Group 1

Group 2



Types of Unsupervised Learning

Unsupervised Learning

Clustering Association

Clustering is an unsupervised 
task which involves grouping the 
similar data points.

Association is an unsupervised 
task that is used to find 
important relationship between 
data points



Clusters

Clustering

ML model



Association

Customer 3Customer 2

• Bread
• Milk
• Fruits
• wheat

• Bread
• Milk
• Rice
• Butter

Now, when customer 3 goes and buys bread, 
it is highly likely that he will also buy milk.

Customer 1



Unsupervised Learning Algorithms

1. K-Means Clustering 
2. Hierarchical Clustering
3. Principal Component Analysis (PCA)
4. Apriori
5. Eclat



ML Project Work Flow

Data Data pre processing Data 
Analysis

Train Test splitEvaluation Machine Learning Model



Training & Testing Data



What is a 
Machine Learning 
Model?



Machine Learning

Data

Machine Learning Models



Machine Learning Model
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Machine Learning Model
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Equation of a Straight Line  : Y = mX + c

Find the values of m and c:

Point P1 (2,7)
Point P2 (3,9)

𝑦2 − 𝑦1
𝑥2 − 𝑥1

Slope, m =
9 − 7

3 − 2
=   2=

m = 2

Point (4,11)

Intercept, c:

Y = 2X + c

11  = 2(4)  + c

c  =  3

The above Line equation is a function 
that relates X and Y.
For a given value of X, we can find the 
corresponding value of Y

Inference:

m = 
𝑑𝑦

𝑑𝑥

c



Machine Learning Model

We cannot have a linear relationship between the variables all the time.



Machine Learning Model

A Machine Learning Model is a function that tries to find the relationship between the 
Features and the Target variable. 

It tries to find the pattern in the data, understand the data and trains on the data. Based on 
this learning, a Machine Learning Model makes Predictions and recognize patterns.

Logistic Regression
Support Vector Machine K-Means Clustering



Topics covered in  this module:

1. What is a Machine Learning Model?

2. Supervised ML Models

3. Unsupervised ML Models

4. Model Selection

5. Overfitting

6. Underfitting

7. Model Optimization

8. Loss Function

9. Model Evaluation



Supervised Learning 
Models



Supervised Learning

In Supervised Learning, the Machine Learning algorithm 
learns from Labelled Data

Apples

Mangoes

ML model

Unknown Image

Apple



Types of Supervised Learning

Supervised Learning

Classification Regression

Classification is about predicting 
a class or discrete values
Eg: Male or Female; True or 
False

Regression is about predicting a 
quantity or continuous values
Eg: Salary; age; Price.



Types of Supervised Learning

Classification:

Regression:

(Dog or Cat)

Rainfall in cm

Rainfall in cmTemperature

Dog Cat



Supervised Learning Models

Classification: Regression:

1. Logistic Regression
2. Support Vector Machine Classifier
3. Decision Tree
4. K-Nearest Neighbors
5. Random Forest
6. Naïve Bayes Classifier

1. Linear Regression
2. Lasso Regression
3. Polynomial Regression
4. Support Vector Machine 

Regressor
5. Random Forest Regressor
6. Bayesian Linear Regressor



Unsupervised Learning 
Models



Unsupervised Learning

In Unsupervised Learning, the Machine Learning 
algorithm learns from Unlabelled Data

ML model

Group 1

Group 2



Types of Unsupervised Learning

Unsupervised Learning

Clustering Association

Clustering is an unsupervised 
task which involves grouping the 
similar data points.

Association is an unsupervised 
task that is used to find 
important relationship between 
data points



Clusters

Clustering

ML model



Association

Customer 3Customer 2

• Bread
• Milk
• Fruits
• wheat

• Bread
• Milk
• Rice
• Butter

Now, when customer 3 goes and buys bread, 
it is highly likely that he will also buy milk.

Customer 1



Unsupervised Learning Models

1. K-Means Clustering 
2. Hierarchical Clustering
3. Principal Component Analysis (PCA)
4. Apriori
5. Eclat



How to choose the right 
Machine Learning Model?
(Model Selection)



Model Selection

Model Selection in Machine Learning is the process of choosing the best suited 
model for a particular problem. Selecting a model depends on various factors 
such as the dataset, task, nature of the model, etc.

Logistic Regression K-Means Clustering Neural Network



Models can be selected based on :

1. Type of Data available:
a. Images & Videos – CNN
b. Text data or Speech data – RNN
c. Numerical data – SVM, Logistic Regression, Decision trees, etc.

2. Based on the task we need to carry out:
a. Classification tasks – SVM, Logistic Regression, Decision trees, etc.
b. Regression tasks – Linear regression, Random Forest, Polynomial regression, etc.
c. Clustering tasks – K-Means Clustering, Hierarchical Clustering

Model Selection



Cross Validation

Support Vector Machine

Accuracy

88%

83%

86%

81%

84%

Dataset

Mean Accuracy =  88 + 83 + 86 + 81 + 84

5
=  84.4 %



Logistic Regression

Accuracy

90%

88%

86%

91%

85%

Dataset

Mean Accuracy =  90 + 88 + 86 + 91 + 85

5
=   88 %

Cross Validation



✓Accuracy score for SVM  = 84.4 %

✓Accuracy score for Logistic Regression = 88 %

Cross Validation Implementation:

Cross Validation



Overfitting
in Machine Learning



Overfitting

Overfitting refers to a model that models the training data too well. Overfitting happens 
when a model learns the detail and noise in the training dataset to the extent that it 
negatively impacts the performance of the model.

Sign that the model has Overfitted : High Training data Accuracy & very low Test data Accuracy
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Causes for Overfitting:

1. Less Data
2. Increased Complexity of the model
3. More number of layers in Neural Network

Preventing Overfitting by:

1. Using more data
2. Reduce the number of layers in the Neural network
3. Early Stopping
4. Bias – Variance Tradeoff
5. Use Dropouts

Overfitting



Underfitting
in Machine Learning



Underfitting

Underfitting happens when the model does not learn enough from the data. Underfitting 
occurs when a machine learning model cannot capture the underlying trend of the data

Sign that the model has Underfitted : Very Low Training data Accuracy
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Causes for Underfitting:

1. Choosing a wrong model
2. Less complexity of the model
3. Less variance but high bias

Prevent Underfitting by:

1. Choosing the correct model appropriate for the problem
2. Increasing the complexity of the model
3. More number of parameters to the model
4. Bias – Variance Tradeoff

Underfitting



Bias – Variance Tradeoff
in Machine Learning



Loss Function 
in Machine Learning



Loss Function

Loss function measures how far an estimated value is from its true value. 

It is helpful to determine which model performs better & which parameters 
are better.

Loss   = 

Types of Loss Function:

❖ Cross Entropy Loss
❖ Squared Error Loss
❖ KL Divergence



Loss Function

y = 0.0000003x3 + 0.0002x2 + 0.010x + 0.025

Degree 3 Polynomial

x

y



Loss Function

y1 = 0.0000015x3 + 0.0042x2 + 0.020x + 0.035

y2 = 0.0000023x3 + 0.0001x2 + 0.015x + 0.020

y3 = 0.0000045x3 + 0.0003x2 + 0.040x + 0.028

y = 0.0000003x3 + 0.0002x2 + 0.010x + 0.025

x y y1 y2 y3

0.30 0.35 0.38 0.39 0.41

0.45 0.48 0.45 0.47 0.56

0.50 0.55 0.59 0.58 0.63

0.55 0.63 0.65 0.69 0.70

0.66 0.72 0.75 0.78 0.78



Loss   = 

Loss1 = [  (0.35-0.38)2 + (0.48-0.45)2 + (0.55-0.59)2 + (0.63-0.65)2 + (0.72-0.75)2 ]  / 5

x y y1 y2 y3

0.30 0.35 0.38 0.39 0.41

0.45 0.48 0.45 0.47 0.56

0.50 0.55 0.59 0.58 0.63

0.55 0.63 0.65 0.69 0.70

0.66 0.72 0.75 0.78 0.78

Loss Function

Loss1 =  0.173

Low Loss value   → High Accuracy



Loss Function

Loss function measures how far an estimated value is from its true value. 

It is helpful to determine which model performs better & which parameters 
are better.

Loss   = 

Types of Loss Function:

❖ Cross Entropy Loss
❖ Squared Error Loss
❖ KL Divergence



Bias – Variance Tradeoff

Bias :

Bias is the difference between the average prediction of our model and the 
correct value which we are trying to predict.

Bias



Variance :

Variance is the amount that the estimate of the target function will 

change if different training data was used.

Bias – Variance Tradeoff

Bias = 0



Identify an appropriate model to predict the Height of a person,
When their weight is given.

Problem statement:

Weight

H
ei

gh
t

Bias – Variance Tradeoff



Underfitting & Overfitting

(Plot on training data)

Weight

H
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gh
t

Weight

H
ei

gh
t

(i) Underfitting (ii) Overfitting



( Testing with different data)

Weight

H
ei

gh
t

Weight

H
ei

gh
t

(i) Underfitting (ii) Overfitting

a. High Bias
b. Low Variance

a. Low Bias
b. High Variance

Inference: Inference:

Bias – Variance Tradeoff



Bias – Variance Tradeoff



Bias – Variance Tradeoff

Techniques to have better Bias – Variance Tradeoff :

1. Good Model Selection

2. Regularization

3. Dimensionality Reduction

4. Ensemble methods



Model Evaluation 
in Machine Learning



Work Flow of a ML Project

Data Data pre processing Data Analysis

Train Test splitXGBoost RegressorEvaluation



Types of Supervised Learning

Supervised Learning

Classification Regression

Classification is about predicting 
a class or discrete values
Eg: Male or Female; True or 
False

Regression is about predicting a 
quantity or continuous values
Eg: Salary; age; Price.

Evaluation metric for 
Classification:  Accuracy score

Evaluation metric for 
Regression:  Mean Absolute Error



Accuracy Score

In Classification, Accuracy Score is the ratio of number of correct predictions
to the total number of input data points.

Accuracy Score   = 
Number of correct predictions

Total Number of data points

x  100   %

Number of correct predictions   =   128   

Total Number of data points   =   150

Accuracy Score   =   85.3 % 

from  sklearn.metrics import  accuracy_score



Mean Squared Error

Mean Squared Error measures the average of the squares of the errors, that is, the 
average squared difference between the estimated values and the actual value.

Actual Value (  Yi =   140 mg/dL  )

from  sklearn.metrics import  mean_squared_error

Predicted Value (  Yi =   160 mg/dL  )



Model Parameters &
Hyperparameters



Parameters

Model Parameters Hyperparameters

These are the parameters of the model 
that can be determined by training with 
training data. These can be considered 
as internal Parameters.

Hyperparameters are parameters whose 
values control the learning process. These 
are adjustable parameters used to obtain 
an optimal model. External Parameters.

➢ Weights
➢ Bias

➢ Learning rate
➢ Number of Epochs

Types of Parameters

Y   =   w*X   +   b



Model Parameters

Weights: Weight decides how much influence the input will have on the output.

Applicant’s Details

Name Degree College C C++ Python Height Weight No. of 
Backlogs

A B.E ABC 
college

✓ × ✓
165 72 1

B M.E XYZ
College

✓ ✓ × 168 80 0

C M.C.A State 
College

✓ × × 175 67 0

D B.E ZYX
College

✓ ✓ ✓
168 70 2

✓ ✓ ✓ ✓ ✓× × × ✓



Model Parameters

Weights:

Weight decides how much influence the input will have on the output.

Y   =   w*X   +   b

X – feature or input variable
Y – Target or output variable
w – weight
b – bias 

Y   =   w1*X1 +   w2*X2 +   w3*X3 + b

Bias:

Bias is the offset value given to the model. Bias is used to shift the model in a particular 
direction. It is similar to a Y-intercept. ‘b’ is equal to ‘Y’ when all the feature values are zero.



Y = wX + b

X --> X value
Y --> Y value
w --> weight
b --> bias
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w = 
𝑑𝑦

𝑑𝑥

b

Linear Regression

Bias:

Bias is the offset value given to the model. Bias is used to shift the model in a particular 
direction. It is similar to a Y-intercept. ‘b’ is equal to ‘Y’ when all the feature values are zero.



Hyperparameters

Learning Rate:

Number of Epochs:

The Learning Rate is a tuning parameter in an optimization 
algorithm that determines the step size at each iteration 
while moving toward a minimum of a loss function.

Number of Epochs represents the number of times the model 
iterates over the entire dataset.

Gradient Descent



Parameters

Model Parameters Hyperparameters

These are the parameters of the model 
that can be determined by training with 
training data. These can be considered 
as internal Parameters.

Hyperparameters are parameters whose 
values control the learning process. These 
are adjustable parameters used to obtain 
an optimal model. External Parameters.

➢ Weights
➢ Bias

➢ Learning rate
➢ Number of Epochs

Types of Parameters



Gradient Descent in
Machine Learning



Model Parameters

Weights:

Weight decides how much influence the input will have on the output.

Y   =   w*X   +   b

X – feature or input variable
Y – Target or output variable
w – weight
b – bias 

Y   =   w1*X1 +   w2*X2 +   w3*X3 + b

Bias:

Bias is the offset value given to the model. Bias is used to shift the model in a particular 
direction. It is similar to a Y-intercept. ‘b’ is equal to ‘Y’ when all the feature values are zero.



Hyperparameters

Learning Rate:

Number of Epochs:

The Learning Rate is a tuning parameter in an optimization 
algorithm that determines the step size at each iteration 
while moving toward a minimum of a loss function.

Number of Epochs represents the number of times the model 
iterates over the entire dataset.



Loss Function

Loss function measures how far an estimated value is from its true value. 

It is helpful to determine which model performs better & which parameters 
are better.

Loss   = 



Model Optimization

Y = w1X + b1

(w1 & b1 are the parameters of the 
line)

X

Y
Optimization refers to determining best parameters for a model, such that the loss 
function of the model decreases, as a result of which the model can predict more 
accurately.



Model Optimization

Y = w2X + b2

X

Y
Optimization refers to determining best parameters for a model, such that the loss 
function of the model decreases, as a result of which the model can predict more 
accurately.



Model Optimization

Y = w3X + b3

Hence, w3 & b3 are the best parameters

X

Y
Optimization refers to determining best parameters for a model, such that the loss 
function of the model decreases, as a result of which the model can predict more 
accurately.



Gradient Descent

Weight (w)
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Global minimum

Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the loss function in various 
machine learning algorithms. It is used for updating the parameters of the learning model.

w --> weight
b  --> bias
L -->  Learning Rate 

dw --> Partial Derivative of loss function with respect to m

db --> Partial Derivative of loss function with respect to c

w   =   w   - L*dw

b    =   b   - L*db



Linear Regression
- intuition



Machine Learning

Data

Machine Learning model



Linear Regression

Experience 
in Years

0 2 4 5 6

Salary 2,00,000 4,00,000 8,00,000 10,00,000 12,00,000
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Years of Experience vs. Salary
What would be the salary of a 
person with 3 years of Experience?

~ ₹ 650000 per Year
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Linear Regression
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Equation of a Straight Line  : Y = mX + c

Find the values of m and c:

Point P1 (2,7)
Point P2 (3,9)

𝑦2 − 𝑦1
𝑥2 − 𝑥1

Slope, m =
9 − 7

3 − 2
=   2=

m = 2

Point (4,11)

Intercept, c:

Y = 2X + c

11  = 2(4)  + c

c  =  3

The above Line equation is a function 
that relates X and Y.
For a given value of X, we can find the 
corresponding value of Y

Inference:

m = 
𝑑𝑦

𝑑𝑥

c

Linear Regression



What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one 
dependent variable based on two or more independent variables.



Advantages:

1. Very simple to implement
2. Performs well on data with linear relationship

Disadvantages:

1. Not suitable for data having non-linear relationship
2. Underfitting issue
3. Sensitive to Outliers

Linear Regression



Linear Regression
- Mathematical 
Understanding



Y = mX + c

X --> X value
Y --> Y value
m --> Slope
c  --> Intercept
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Linear Regression



Loss Function

Loss function measures how far an estimated value is from its true value. 

It is helpful to determine which model performs better & which parameters 
are better.

Loss   = 



x

y

ŷ =  3X + 2

x y ŷ

2 10 8

3 14 11

4 18 14

5 22 17

6 26 20

Randomly assigned Parameters:   m = 3;    c  = 2

Loss Function



Loss Function

x y ŷ

2 10 8

3 14 11

4 18 14

5 22 17

6 26 20

Loss   = 

Loss  = [  (10 - 8)2 + (14 - 11)2 + (18 - 14)2 + (22 - 17)2 + (26 - 20)2 ]  / 5

Loss  =  [ 4 + 9 + 16 + 25 + 36]  /  5

Loss  =  18

Low Loss value   → High Accuracy



X

Y

Linear Regression

Y = mX + c

Best Fit



Gradient Descent for 
Linear Regression



Model Optimization

Y = m1X + C1

(m1 & C1 are the parameters of the 
line)

X

Y
Optimization refers to determining best parameters for a model, such that the loss 
function of the model decreases, as a result of which the model can predict more 
accurately.



Model Optimization

Y = m2X + C2

X

Y
Optimization refers to determining best parameters for a model, such that the loss 
function of the model decreases, as a result of which the model can predict more 
accurately.



Model Optimization

Y = m3X + C3

Hence, m3 & C3 are the best parameters

X

Y
Optimization refers to determining best parameters for a model, such that the loss 
function of the model decreases, as a result of which the model can predict more 
accurately.



Loss Function

Loss function measures how far an estimated value is from its true value. 

It is helpful to determine which model performs better & which parameters 
are better.

Loss   = 



Gradient Descent
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Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the loss function in various 
machine learning algorithms. It is used for updating the parameters of the learning model.

m --> slope
c  --> intercept
L -->  Learning Rate 

Dm --> Partial Derivative of loss function with respect to m

Dc --> Partial Derivative of loss function with respect to c



Gradient Descent



Logistic Regression
- intuition



Logistic Regression

About Logistic Regression:

1. Supervised Learning Model

2. Classification model

3. Best for Binary Classification Problem

4. Uses Sigmoid function

 

   

 

          



Logistic Regression

Z

=
1

1 + 𝑒−𝑍

Sigmoid Function

𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

Ŷ

Ŷ  - Probability that (y = 1)

Ŷ =  P( Y=1  |  X )

X - input features

w – weights 
( number of weights is equal to the 
number of input features in a 
dataset)

b - bias

Ŷ =  σ (Z)

0.5



Advantages:

1. Easy to implement
2. Performs well on data with linear relationship
3. Less prone to over-fitting for low dimensional dataset

Disadvantages:

1. High dimensional dataset causes over-fitting
2. Difficult to capture complex relationships in a dataset
3. Sensitive to Outliers
4. Needs a larger dataset

Logistic Regression



Math behind 
Logistic Regression



Logistic Regression

Z

=
1

1 + 𝑒−𝑍

Sigmoid Function

𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

Ŷ

Ŷ  - Probability that (y = 1)

Ŷ =  P( Y=1  |  X )

X - input features

w – weights 
( number of weights is equal to the 
number of input features in a 
dataset)

b - bias

Ŷ =  σ (Z)

0.5



Logistic Regression

Z

=
1

1 + 𝑒−𝑍

Sigmoid Function

Ŷ

Ŷ

Ŷ  - Probability that (y = 1)

Ŷ =  P( Y=1  |  X )

X - input features

w – weights 
( number of weights is equal to the 
number of input features in a 
dataset)

b - bias

Ŷ =  σ (Z)

0.5

Z = 5X + 10



Ŷ =
1

1+𝑒−𝑍

X -9 -8 0 8 9

Ŷ

Logistic Regression

Z = 5X + 10

X = -9 X = -8 X = 0 X = 8 X = 9

Z = 5(-9) + 10 Z = 5(-8) + 10 Z = 5(0) + 10 Z = 5(8) + 10 Z = 5(9) + 10

Z = -35 Z = -30 Z = 10 Z = 50 Z = 55

Ŷ =
1

1+𝑒35
Ŷ =

1

1+𝑒30 Ŷ =
1

1+𝑒−10
Ŷ =

1

1+𝑒−50
Ŷ =

1

1+𝑒−55

Ŷ  =  0 Ŷ  =  0 Ŷ  =  1 Ŷ  =  1 Ŷ  =  1



Ŷ =
1

1+𝑒−𝑍

X -9 -8 0 8 9

Ŷ 0 0 1 1 1

Logistic Regression

Z = 5X + 10

X = -9 X = -8 X = 0 X = 8 X = 9

Z = 5(-9) + 10 Z = 5(-8) + 10 Z = 5(0) + 10 Z = 5(8) + 10 Z = 5(9) + 10

Z = -35 Z = -30 Z = 10 Z = 50 Z = 55

Ŷ =
1

1+𝑒35
Ŷ =

1

1+𝑒30 Ŷ =
1

1+𝑒−10
Ŷ =

1

1+𝑒−50
Ŷ =

1

1+𝑒−55

Ŷ  =  0 Ŷ  =  0 Ŷ  =  1 Ŷ  =  1 Ŷ  =  1



Logistic Regression

Z

=
1

1 + 𝑒−𝑍

Sigmoid Function

𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

Ŷ
0.5

If  Z  value is a large 
positive number,  

=
1

1 + 0
Ŷ

Ŷ  =  1

If  Z  value is a large 
negative number,  

=
1

1 + (𝑙𝑎𝑟𝑔𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟)Ŷ

Ŷ  =  0

Inference:



Loss Function & 
Cost Function for 
Logistic Regression

J (w,b)



Logistic Regression

Z

=
1

1 + 𝑒−𝑍

Sigmoid Function

𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

Ŷ

Ŷ  - Probability that (y = 1)

Ŷ =  P( Y=1  |  X )

X - input features

w – weights 
( number of weights is equal to the 
number of input features in a 
dataset)

b - bias

0.5



Loss function measures how far an estimated value is from its true value. 

Loss Function

Gradient Descent
With Local minima 

Gradient Descent
With Global minima 

Loss   = 



Loss Function for Logistic Regression

Binary Cross Entropy Loss Function (or) Log Loss :

L ( y, ŷ )  =  - (y log ŷ  + (1 – y) log ( 1 – ŷ ))

When y = 1, L ( 1, ŷ )  =  - (1 log ŷ  + (1 – 1) log ( 1 – ŷ )) L ( 1, ŷ )  =  - log ŷ⇒ ⇒

We always want a smaller Loss Function value, hence, ŷ should be very large, 
so that ( – log ŷ) will be a large negative number.

When y = 0, L ( 0, ŷ )  =  - (0 log ŷ  + (1 – 0) log ( 1 – ŷ )) L ( 0, ŷ )  =  - log ( 1 – ŷ )⇒ ⇒

We always want a smaller Loss Function value, hence, ŷ should be very small, 
so that – log (1 - ŷ) will be a large negative number.



Cost Function for Logistic Regression

Loss function ( L ) mainly applies for a single training set as compared to the 
cost function (J) which deals with a penalty for a number of training sets or 
the complete batch.

L ( y, ŷ )  =  - (y log ŷ  + (1 – y) log ( 1 – ŷ ))

J(w, b)   =   
1

𝑚
Σ(L( y(i), ŷ(i) ))  =  -

1

𝑚
Σ(y(i) log ŷ(i) + (1 – y(i)) log ( 1 – ŷ(i) ))

( ‘m’  denotes the number of data points in the training set)



Gradient Descent for 
Logistic Regression



Logistic Regression

About Logistic Regression:

1. Supervised Learning Model

2. Classification model

3. Best for Binary Classification Problem

4. Uses Sigmoid function

5. Binary Cross Entropy Loss Function (or) Log Loss

=
1

1 + 𝑒−𝑍

Sigmoid Function

𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

J(w, b)   =   
1

𝑚
Σ(L( y(i), ŷ(i) ))  =  -

1

𝑚
Σ(y(i) log ŷ(i) + (1 – y(i)) log ( 1 – ŷ(i) ))



Gradient Descent

Weight (w)
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Global
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Global minimum

Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various 
machine learning algorithms. It is used for updating the parameters of the learning model.

w --> weight
b  --> bias
L -->  Learning Rate 

dw --> Partial Derivative of cost function with respect to w

db --> Partial Derivative of cost function with respect to b

w2 =   w1 - L*dw

b2 =   b1 - L*db

dw =  
1

𝑚
∗ Ŷ − Y . 𝑋

db =  
1

𝑚
∗ Ŷ − Y



Logistic Regression

=
1

1 + 𝑒−𝑍
𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

w2 =   w1 - L*dw

b2 =   b1 - L*db

dw =  
1

𝑚
∗ Ŷ − Y . 𝑋

db =  
1

𝑚
∗ Ŷ − Y

Logistic Regression model:

❖ Sigmoid Function

❖ Updating weights 
through Gradient Descent

❖ Derivatives



Building Logistic Regression 
model from Scratch in 
Python



Logistic Regression

About Logistic Regression:

1. Supervised Learning Model

2. Classification model

3. Best for Binary Classification Problem

4. Uses Sigmoid function

5. Binary Cross Entropy Loss Function (or) Log Loss

=
1

1 + 𝑒−𝑍

Sigmoid Function

𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

J(w, b)   =   
1

𝑚
Σ(L( y(i), ŷ(i) ))  =  -

1

𝑚
Σ(y(i) log ŷ(i) + (1 – y(i)) log ( 1 – ŷ(i) ))



Gradient Descent

Weight (w)

C
o

st
 F

u
n

ct
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n
 (

J)

Random
Initial 
value

Global
Minimum



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various 
machine learning algorithms. It is used for updating the parameters of the learning model.

w --> weight
b  --> bias
L -->  Learning Rate 

dw --> Partial Derivative of cost function with respect to w

db --> Partial Derivative of cost function with respect to b

w2 =   w1 - L*dw

b2 =   b1 - L*db

dw =  
1

𝑚
∗ Ŷ − Y . 𝑋

db =  
1

𝑚
∗ Ŷ − Y



Logistic Regression

=
1

1 + 𝑒−𝑍
𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

w2 =   w1 - L*dw

b2 =   b1 - L*db

dw =  
1

𝑚
∗ Ŷ − Y . 𝑋

db =  
1

𝑚
∗ Ŷ − Y

Logistic Regression model:

❖ Sigmoid Function

❖ Updating weights 
through Gradient Descent

❖ Derivatives



Logistic Regression

Z

=
1

1 + 𝑒−𝑍

Sigmoid Function

𝑍 = 𝑤. 𝑋 + 𝑏Ŷ

Ŷ

Ŷ  - Probability that (y = 1)

Ŷ =  P( Y=1  |  X )

X - input features

w – weights 
( number of weights is equal to the 
number of input features in a 
dataset)

b - bias

0.5



Multiplying 2 Matrices

The number of columns in the First matrix should be equal to the 
number of rows in the Second Matrix

The resultant matrix will have the same number of rows as the first 
matrix & the same number of columns as the Second Matrix 

2 3
10 5

2 x 2

10 5
20 4

2 x 2

x

2 1
4 2
6 3

5 2
3 6
2 5

3 x 2 3 x 2

Can be multiplied.
Resultant matrix will have the 
shape 2 x 2

Cannot be multiplied.

Rule : 

x



Support Vector Machine 
(SVM) Classifier
- intuition



Support Vector Machine 

About Support Vector Machine model:

1. Supervised Learning Model

2. Both Classification & Regression

3. Hyperplane

4. Support Vectors



Support Vector Machine Classifier

1 2

Hyperplane

1 2 Support Vectors

x1

x2



Support Vector Machine Classifier

SVM in 2 dimensions SVM in 3 dimensions



Support Vector Machine Classifier

Hyperplane:

Hyperplane is a line (in 2d space) or a plane that separate the data points into 2 classes. 

Support Vectors:

Support Vectors are the data points which lie nearest to the hyperplane. If theses data 
points changes, the position of the hyperplane changes.



Advantages:

1. Works well with smaller datasets
2. Works efficiently when there is a clear margin of separation
3. Works well with high dimensional data

Disadvantages:

1. Not suitable for large datasets as the training time is higher
2. Not suitable for noisier datasets with overlapping classes

Support Vector Machine Classifier



Math behind
Support Vector Machine 
(SVM) Classifier



Support Vector Machine Classifier

➢ Hyperplane

➢ Support Vectors

➢ Margin

➢ Linearly separable data



Support Vector Machine Classifier

SVM in 2 dimensions SVM in 3 dimensions

Kernel



Support Vector Machine Classifier

P1(-3, 0)

P2(3, 3)

y  =  mx  +  c
( Hyperplane )

Let slope, m = - 1

Intercept, c = 0

w --> parameters of the line
(m, c)   =  (-1, 0)

x1

x2P1(-3, 0) P2(3, 3)

wTx =  −1
0

−3 0 wTx =  −1
0

3 3

wTx =  3 wTx =  - 3

Inference: For all the points which 
lie in the left side of the 
hyperplane, wTx value will be 
Positive

Inference: For all the points which 
lie in the right side of the 
hyperplane, wTx value will be 
Negative

( Positive ) ( Negative )



Support Vector Machine Classifier

x1

x2

wTx =  Label wTx +  b  =  Label

b x1

x2



Support Vector Machine Classifier

Which is the best Hyperplane?



Support Vector Machine Classifier

Which is the best Hyperplane?



Support Vector Machine Classifier

Optimization for Maximum margin:

wT x  +  b  =  Label
( Hyperplane )

wT x1 +  b  =  1

wT x2 +  b  = - 1

wT x2 +  b  = - 1

wT x1 +  b  =  1

( - )

wT (x1 – x2)  =  2

wT (x1 – x2)  =

|| w ||

(x1 – x2)  =

|| w ||

2

|| w ||

2

Divide by   || w ||

(magnitude of the vector)

( margin)



Support Vector Machine Classifier

Optimization for Maximum margin:

wT x  +  b  =  Label
( Hyperplane )

wT x1 +  b  =  1

wT x2 +  b  = - 1

(x1 – x2)  =

|| w ||

2
( margin)

yi =  { wT x1 +  b  ≤ - 1

wT x1 +  b  ≥ 1

-1,
1, 

( Label )

|| w ||

2

max ( ) Such that, 

yi =  { wT x1 +  b  ≤ - 1

wT x1 +  b  ≥ 1

-1,
1, 



Support Vector Machine Classifier

|| w ||

2

max ( ) Such that, 

yi =  { wT x1 +  b  ≤ - 1

wT x1 +  b  ≥ 1

-1,
1, 

|| w ||

2min ( ) +  c  *  Σ εi

c   -->  Number of errors

εi -->  Error magnitude

εi

εi

Maximum margin without overfitting:



Support Vector Machine 
(SVM)  - Kernels



Support Vector Machine Classifier

➢ Hyperplane

➢ Support Vectors

➢ Margin

➢ Linearly separable data



SVM in 2 dimensions SVM in 3 dimensions

Kernel

SVM Kernel

Kernel Function generally transforms the training set of data so that a non-linear decision 
surface can be transformed to a linear equation in a higher number of dimension spaces.
It returns the inner product between two points in a standard feature dimension.

SVM Kernel :



SVM Kernels

Types of SVM Kernels :

1. Linear

2. Polynomial

3. Radial Basis Function (rbf)

4. Sigmoid



SVM Kernels

Feature (x) -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Feature (x)

Class 1

Class 2



0

5

10

15

20

25

30

35

40

-8 -6 -4 -2 0 2 4 6 8

x  vs x2

Feature (x) -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

x2 36 25 16 9 4 1 0 1 4 9 16 25 36

SVM Kernels

Hyperplane

Class 1

Class 2



Types of SVM Kernels

1. Linear Kernel : 2. Polynomial Kernel:

3. Radial Basis Function  
(rbf) Kernel :

4. Sigmoid Kernel :

K (x1 , x2)  =  x1
T  x2 K (x1 , x2)  =  (x1

T x2 + r)d

K (x1 , x2)  =  exp ( - 𝛾.|| x1 – x2 ||2) K (x1 , x2)  =  tanh (  𝛾 . x1
T x2 + r)



Support Vector Machine Classifier

SVM in 2 dimensions SVM in 3 dimensions

Kernel

x1
2

x2
2

x1



Loss Function for
Support Vector Machine 
Classifier



Support Vector Machine Classifier

➢ Hyperplane

➢ Support Vectors

➢ Margin

➢ Linearly separable data



wT x  +  b  =  y
( Hyperplane )

wT x1 +  b  =  1

wT x2 +  b  = - 1

|| w ||

2

max ( )
ŷi =  { wT x1 +  b  ≤ - 1

wT x1 +  b  ≥ 1

-1,
1, 

Support Vector Machine Classifier

( margin)



Support Vector Machine Classifier

εi

εi

Hard Margin Soft Margin



Loss function measures how far an estimated value is from its true value. 

It is helpful to determine which model performs better & which parameters 
are better.

Loss   = 

Loss Function

For Support Vector Machine Classifier “Hinge Loss” is used as the Loss Function.



Hinge Loss

Hinge Loss is one of the types of Loss Function, mainly used for maximum margin classification 
models. 

Hinge Loss incorporates a margin or distance from the classification boundary into the loss 
calculation. Even if new observations are classified correctly, they can incur a penalty if the margin 
from the decision boundary is not large enough.

L = max (0, 1  - yi (wT xi +  b))

0  - for correct classification
1  - for wrong classification



Hinge Loss

L = max (0, 1  - yi (wT xi +  b))

0  - for correct classification
1  - for wrong classification

Misclassification : 

yi = 1   ŷi =  -1

L  =  ( 1  - (1)(-1)

L  =  ( 1 + 1 )

L  =  2   (High loss Value)

yi = -1   ŷi =  1

L  =  ( 1  - (-1)(1)

L  =  ( 1 + 1 )

L  =  2 (High loss Value)

Correct classification : 

yi = 1   ŷi =  1

L  =  ( 0  - (1)(1)

L  =  ( 0 - 1 )

L  =  -1 (Low loss Value)

yi = -1   ŷi =  -1

L  =  ( 0  - (-1)(-1)

L  =  ( 0 - 1 )

L  =  -1 (Low loss Value)



Gradient Descent for 
Support Vector Machine
Classifier



Support Vector Machine Classifier

➢ Hyperplane

➢ Support Vectors

➢ Margin



wT x  +  b  =  y
( Hyperplane )

wT x1 +  b  =  1

wT x2 +  b  = - 1

|| w ||

2

max ( )
ŷi =  { wT x1 +  b  ≤ - 1

wT x1 +  b  ≥ 1

-1,
1, 

Support Vector Machine Classifier

( margin)



Hinge Loss

Hinge Loss is one of the types of Loss Function, mainly used for maximum margin classification 
models. 

Hinge Loss incorporates a margin or distance from the classification boundary into the loss 
calculation. Even if new observations are classified correctly, they can incur a penalty if the margin 
from the decision boundary is not large enough.

L = max (0, 1  - yi (wT xi +  b))

0  - for correct classification
1  - for wrong classification



Gradient Descent

Weight (w)

C
o

st
 F

u
n

ct
io

n
 (

J)

Random
Initial 
value

Global
Minimum



Global minimum

Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various 
machine learning algorithms. It is used for updating the parameters of the learning model.

w --> weight
b  --> bias
L -->  Learning Rate 

𝑑𝐽

𝑑𝑤
--> Partial Derivative of cost function with respect to w

𝑑𝐽

𝑑𝑏
--> Partial Derivative of cost function with respect to b

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏



Gradients for SVM Classifier

if  ( yi . (w.x + b) ≥  1) : else  ( yi . (w.x + b) <  1) :

𝑑𝐽

𝑑𝑤
= 2λw

𝑑𝐽

𝑑𝑏
= 0

𝑑𝐽

𝑑𝑤
= 2λw  - yi . xi

𝑑𝐽

𝑑𝑏
= 𝑦𝑖

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏



Support Vector Machine Classifier

x1

x2

b x1

x2

b



Gradients for SVM Classifier

if  ( yi . (w.xi - b) ≥  1) : else  ( yi . (w.xi - b) <  1) :

𝑑𝐽

𝑑𝑤
= 2λw

𝑑𝐽

𝑑𝑏
= 0

𝑑𝐽

𝑑𝑤
= 2λw  - yi . xi

𝑑𝐽

𝑑𝑏
= 𝑦𝑖

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏



Lasso Regression
- intuition



Lasso Regression

About Lasso Regression:

1. Supervised Learning Model

2. Regression model

3. Least Absolute Shrinkage and Selection Operator

4. Implements Regularization (L1) to avoid Overfitting



Linear Regression

Experience 
in Years

0 2 4 5 6

Salary 2,00,000 4,00,000 8,00,000 10,00,000 12,00,000

0

200000

400000

600000

800000

1000000

1200000

1400000

0 1 2 3 4 5 6 7
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Years of Experience

Years of Experience vs. Salary
What would be the salary of a 
person with 3 years of Experience?

~ ₹ 650000 per Year



Polynomial Equations

1st order Polynomial equation :   y = ax + d

2nd order Polynomial equation :  y = ax2 + bx + d

3rd order Polynomial equation :   y = ax3 + bx2 + cx + d

y  -->  Dependent Variable

x  -->  Independent Variable

a, b, c  -->  coefficients

d  -->  constant term

As the complexity of the model increases,
It tends to Overfit with the data.

Inference:



What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one 
dependent variable based on two or more independent variables.

Y  =  w1 X1 +  b

Y  =  w1 X1 +  w2X2 + w3X3 + b



Regularization

Regularization is used to reduce the overfitting of the model by adding a penalty term 
(λ) to the model. Lasso Regression uses L1 regularization technique.

LASSO  -->  Least Absolute Shrinkage and Selection Operator

The “penalty” term reduces the value of the coefficients or eliminate few coefficients, so that the 
model has fewer coefficients. As a result, overfitting can be avoided. 

This Process is called as Shrinkage.

3rd order Polynomial equation :   y = ax3 + bx2 + cx + d



What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one 
dependent variable based on two or more independent variables.

Feature Selection

Y  =  w1 X1 +  b

Y  =  w1 X1 +   w2X2 +  w3X3 +  b



Math behind
Lasso Regression



Lasso Regression

About Lasso Regression:

1. Supervised Learning Model

2. Regression model

3. Least Absolute Shrinkage and Selection Operator

4. Implements Regularization (L1) to avoid Overfitting



Regularization

Regularization is used to reduce the overfitting of the model by adding a penalty term 
(λ) to the model. Lasso Regression uses L1 regularization technique.

LASSO  -->  Least Absolute Shrinkage and Selection Operator

The “penalty” term reduces the value of the coefficients or eliminate few coefficients, so that the 
model has fewer coefficients. As a result, overfitting can be avoided. 

This Process is called as Shrinkage.

3rd order Polynomial equation :   y = ax3 + bx2 + cx + d



x

y

ŷ =  3X + 2

x y ŷ

2 10 8

3 14 11

4 18 14

5 22 17

6 26 20

Randomly assigned Parameters:   w = 3;    b  = 2

Linear Regression



Cost Function

x y ŷ

2 10 8

3 14 11

4 18 14

5 22 17

6 26 20

Cost (J)   = 

Cost  = [  (10 - 8)2 + (14 - 11)2 + (18 - 14)2 + (22 - 17)2 + (26 - 20)2 ]  / 5

Cost  =  [ 4 + 9 + 16 + 25 + 36]  /  5

Cost  =  18

Low Cost value   → High Accuracy



Lasso Regression

Cost Function for Lasso Regression : 

m --> Total number of Data Points

n  --> Total number of input features

y(i)   --> True Value

ŷ(i) --> Predicted Value

λ -->  Penalty Term

w    -->  Parameter of the model



Boston House Price Dataset

crim zn indus chas nox rm age dis rad tax ptratio b lstat price

0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 15.3 396.9 4.98 24

0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 21.6

0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7

0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4

The dataset used in this project comes from the UCI Machine Learning 
Repository. This data was collected in 1978 and each of the 506 entries 
represents aggregate information about 14 features of homes from various 
suburbs located in Boston.



Gradient Descent for 
Lasso Regression



Lasso Regression

About Lasso Regression:

1. Supervised Learning Model

2. Regression model

3. Least Absolute Shrinkage and Selection Operator

4. Implements Regularization (L1) to avoid Overfitting



Regularization

Regularization is used to reduce the overfitting of the model by adding a penalty term 
(λ) to the model. Lasso Regression uses L1 regularization technique.

LASSO  -->  Least Absolute Shrinkage and Selection Operator

The “penalty” term reduces the value of the coefficients or eliminate few coefficients, so that the 
model has fewer coefficients. As a result, overfitting can be avoided. 

This Process is called as Shrinkage.

3rd order Polynomial equation :   y = ax3 + bx2 + cx + d



Lasso Regression

Cost Function for Lasso Regression : 

m --> Total number of Data Points

n  --> Total number of input features

y(i)   --> True Value

ŷ(i) --> Predicted Value

λ -->  Penalty Term

w    -->  Parameter of the model



Gradient Descent
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Global minimum

Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various 
machine learning algorithms. It is used for updating the parameters of the learning model.

w --> weight
b  --> bias
L -->  Learning Rate 

𝑑𝐽

𝑑𝑤
--> Partial Derivative of cost function with respect to w

𝑑𝐽

𝑑𝑏
--> Partial Derivative of cost function with respect to b

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏



Gradients for Lasso Regularization

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏

𝑦 = 𝑤. 𝑥 + 𝑏



Gradients for Lasso Regularization

if  ( wj >  0) : else  (wj ≤ 0) :

𝑑𝐽

𝑑𝑤
=

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏

xj . + λ
𝑑𝐽

𝑑𝑤
= xj . - λ



if  ( wj >  0) :
else  (wj ≤ 0) :

xj . - λ
𝑑𝐽

𝑑𝑤
=

xj . + λ
𝑑𝐽

𝑑𝑤
=



Building Lasso Regression 
from Scratch in Python



Lasso Regression

About Lasso Regression:

1. Supervised Learning Model

2. Regression model

3. Least Absolute Shrinkage and Selection Operator

4. Implements Regularization (L1) to avoid Overfitting



Regularization

Regularization is used to reduce the overfitting of the model by adding a penalty term 
(λ) to the model. Lasso Regression uses L1 regularization technique.

LASSO  -->  Least Absolute Shrinkage and Selection Operator

The “penalty” term reduces the value of the coefficients or eliminate few coefficients, so that the 
model has fewer coefficients. As a result, overfitting can be avoided. 

This Process is called as Shrinkage.

3rd order Polynomial equation :   y = ax3 + bx2 + cx + d



Lasso Regression

Cost Function for Lasso Regression : 

m --> Total number of Data Points

n  --> Total number of input features

y(i)   --> True Value

ŷ(i) --> Predicted Value

λ -->  Penalty Term

w    -->  Parameter of the model



Gradient Descent

Weight (w)

C
o

st
 F

u
n

ct
io

n
 (

J)

Random
Initial 
value

Global
Minimum



Global minimum

Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various 
machine learning algorithms. It is used for updating the parameters of the learning model.

w --> weight
b  --> bias
L -->  Learning Rate 

𝑑𝐽

𝑑𝑤
--> Partial Derivative of cost function with respect to w

𝑑𝐽

𝑑𝑏
--> Partial Derivative of cost function with respect to b

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏



Gradients for Lasso Regularization

w2 =   w1 - L*
𝑑𝐽

𝑑𝑤

b2 =   b1 - L*
𝑑𝐽

𝑑𝑏

𝑦 = 𝑤. 𝑥 + 𝑏



K-Nearest Neighbors
(KNN) - intuition



K-Nearest Neighbors

About K-Nearest Neighbors:

1. Supervised Learning Model

2. Used for both Classification & Regression

3. Can be used for non-linear data

4. K - Neighbors



K-Nearest Neighbors

Loan Amount

A
n

n
u

al
 In

co
m

e

Didn’t repay on time

Repaid on time

May not repay the 
loan on time

K = 5

Classification Problem:

To Measure the distance between the data points:
❖ Euclidean Distance
❖ Manhattan Distance



K-Nearest Neighbors

Regression Problem:

Work Experience

Sa
la

ry

K = 5

Salary of the person can be calculated 
as the mean of 5 nearest neighbors.



Advantages:

1. Works well with smaller datasets with less number of features
2. Can be used for both Classification & Regression
3. Easy to implement for Multi-class classification problems
4. Different distance criteria can be used                                       

(eg: Euclidean Distance, Manhattan Distance)

Disadvantages:

1. Choosing optimum “K” value
2. Less efficient with high dimensional data.
3. Doesn’t perform well on imbalanced dataset
4. Sensitive to Outliers

K-Nearest Neighbors



Math behind 
K-Nearest Neighbors
(KNN) Classifier



K-Nearest Neighbors

About K-Nearest Neighbors:

1. Supervised Learning Model

2. Used for both Classification & Regression

3. Can be used for non-linear data

4. K - Neighbors



K-Nearest Neighbors

Loan Amount

A
n

n
u

al
 In

co
m

e

Didn’t repay on time

Repaid on time

May not repay the 
loan on time

K = 5

Classification Problem:

To Measure the distance between the data points:
❖ Euclidean Distance
❖ Manhattan Distance



Euclidean Distance

x

y

A 
(x1,y1)

C 
(x2,y2)

B 
(x2,y1)

Pythagoras Theorem:

𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2

𝐴𝐶 = 𝐴𝐵2 + 𝐵𝐶2

O 
(0,0)

𝐴𝐶 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2

d

𝑑 = 𝑥2 − 𝑥1
2+ 𝑦2 − 𝑦1

2

This distance “d” is called the 
Euclidean Distance.



Euclidean Distance

Euclidean Distance  formula:

𝑑 = 𝑥2 − 𝑥1
2+ 𝑦2 − 𝑦1

2

(x1,y1)  =  A (1,1)

(x2,y2)  =  B (2,2)

𝑑 = 2 − 1 2+ 2 − 1 2

𝑑 = 1 + 1

𝑑 = 2

x

y

A (1,1)

C (2,2)

O 
(0,0)

d



K-Nearest Neighbors

Loan Amount

A
n

n
u

al
 In

co
m

e

Didn’t repay on time

Repaid on time

May not repay the 
loan on time

K = 5

Classification Problem:

To Measure the distance between the data points:
❖ Euclidean Distance
❖ Manhattan Distance



Manhattan Distance

Manhattan distance is preferred over Euclidean distance when there is high dimensionality in the data.

Manhattan Distance  formula:

𝑑 = 𝑥1 − 𝑥2 + |𝑦1 − 𝑦2|

x

y

A (1,1)

C (2,2)

O 
(0,0)

d

(x1,y1)  =  A (1,1)

(x2,y2)  =  B (2,2)

𝑑 = 1 − 2 + |1 − 2|

𝑑 = 1 + 1

𝑑 = 2



Calculating Euclidean &
Manhattan Distance 
in Python



Euclidean Distance

Euclidean Distance  formula:

𝑑 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2

(x1,y1)  =  A (1,1)

(x2,y2)  =  B (2,2)

𝑑 = 2 − 1 2 + 2 − 1 2

𝑑 = 1 + 1

𝑑 = 2

x

y

A (1,1)

C (2,2)

O 
(0,0)

d



Manhattan Distance

Manhattan distance is preferred over Euclidean distance when there is high dimensionality in the data.

Manhattan Distance  formula:

𝑑 = 𝑥1 − 𝑥2 + |𝑦1 − 𝑦2|

x

y

A (1,1)

C (2,2)

O 
(0,0)

d

(x1,y1)  =  A (1,1)

(x2,y2)  =  B (2,2)

𝑑 = 1 − 2 + |1 − 2|

𝑑 = 1 + 1

𝑑 = 2



Decision Tree 
- intuition



About Decision Tree model:

1. Supervised Learning Model

2. Used for both Classification & Regression

3. Builds Decision Nodes at each step

4. Basis of Tree-based models

Decision Tree



Decision Tree

Picture credits: AI Time Journal
Picture credits: 
https://towardsdatascience.com/decision
-tree-hugging-b8851f853486

Decision Tree – examples:



Decision Tree - Terminologies

Root Node

Decision Node 
Or

Internal Node

Decision Node 
Or

Internal Node

Terminal Node 
Or

Leaf Node

Terminal Node 
Or

Leaf Node

Terminal Node 
Or

Leaf Node

Terminal Node 
Or

Leaf Node

Yes
No

Yes No Yes No



Decision Tree

Picture credits: AI Time Journal
Picture credits: 
https://towardsdatascience.com/decision
-tree-hugging-b8851f853486

Decision Tree – examples:



Advantages:

1. Can be used for both Classification & Regression
2. Easy to interpret
3. No need for normalization or scaling
4. Not sensitive to outliers

Disadvantages:

1. Overfitting issue 
2. Small changes in the data alter the tree structure causing 

instability
3. Training time is relatively higher

Decision Tree



Entropy, 
Information Gain & 
Gini Impurity



Decision Tree - Terminologies

Root Node

Decision Node 
Or

Internal Node

Decision Node 
Or

Internal Node

Terminal Node 
Or

Leaf Node

Terminal Node 
Or

Leaf Node

Terminal Node 
Or

Leaf Node

Terminal Node 
Or

Leaf Node

Yes
No

Yes No Yes No



Decision Tree

Degree Experience in Years Placed / Not Placed

Masters 2 Placed

Bachelors 0 Not Placed

Masters 3 Placed

Masters 1 Not Placed

Bachelors 2 Placed

Masters 3 Placed

Bachelors 0 Not Placed

Bachelors 1 Not Placed

Problem Statement: Build a Decision Tree to determine whether a person will get a Job 
or not based on their Degree & Years of Experience.



Decision Tree

Degree
Experience
> 2 Years

Masters Bacheors
Experience 
> 2 Years

Experience 
< 2 Years

Placed
Not Placed
Placed
Not Placed

Placed 
Placed
Placed
Not Placed

Not Placed 
Not Placed
Placed
Not Placed

Placed 
Placed
Placed
Placed

Bachelors Masters Yes No

2 : 2 3 : 1 4 : 0 1 : 3

Entropy: High
Information Gain: Low
Gini Impurity: High

Entropy: Low
Information Gain: High
Gini Impurity: Low



Entropy

Entropy:

In Machine Learning, Entropy is the quantitative measure of the randomness of the information being processed. 

A high value of Entropy means that the randomness in the system is high
and thus making accurate predictions is tough.
A low value of Entropy means that the randomness in the system is low and 
thus making accurate predictions is easier.

Entropy

c  -->  number of classes
pi -->  Probability of ith class



Information Gain

Information Gain is the measure of how much information a feature provides about a class. Low 
entropy leads to increased Information Gain and high entropy leads to low Information Gain.

Information gain computes the difference between entropy before split and average entropy 
after split of the dataset based on a given feature.

Information gain (T, F)  = 𝐄𝐧𝐭𝐫𝐨𝐩𝐲 𝐓 − ෍
𝒗∈𝑭

𝑻𝒗

𝑻
. 𝑬𝒏𝒕𝒓𝒐𝒑𝒚 (𝑻)



Gini Impurity

The split made in a Decision Tree is said to be pure if all the data points are accurately 
separated into different classes. 

Gini Impurity measures the likelihood that a randomly selected data point would be 
incorrectly classified by a specific node. 



Decision Tree

Degree
Experience
> 2 Years

Masters Bacheors
Experience 
> 2 Years

Experience 
< 2 Years

Placed
Not Placed
Placed
Not Placed

Placed 
Placed
Placed
Not Placed

Not Placed 
Not Placed
Placed
Not Placed

Placed 
Placed
Placed
Placed

Bachelors Masters Yes No

2 : 2 3 : 1 4 : 0 1 : 3

Entropy: High
Information Gain: Low
Gini Impurity: High

Entropy: Low
Information Gain: High
Gini Impurity: Low



Cross Validation,
Hyperparameter Tuning, 
& Evaluation metrics



Module 8 - Outline

Cross Validation Hyperparameter Tuning GridSearchCV RandomizedSearchCV

Model Selection Accuracy & Confusion Matrix Precision, Recall, F1 Score Metrics for Regression



K-Fold 
Cross-Validation



K-Fold Cross-Validation

In K-Fold Cross Validation, we split the dataset into “K” number of folds (subsets). One 
chunk of data is used as test data for evaluation & the remaining part of the data is 
used for training the model. Each time, a different chunk will be used as the test data. 

DatasetK = 5

Support Vector Machine

Logistic Regression



Support Vector Machine

Accuracy

88%

83%

86%

81%

84%

Dataset

Mean Accuracy =  88 + 83 + 86 + 81 + 84

5
=  84.4 %

K-Fold Cross-Validation

K = 5



Logistic Regression

Accuracy

90%

88%

86%

91%

85%

Dataset

Mean Accuracy =  90 + 88 + 86 + 91 + 85

5
=   88 %

K-Fold Cross-Validation

K = 5



✓Accuracy score for SVM  = 84.4 %

✓Accuracy score for Logistic Regression = 88 %

Advantages of using K-Fold Cross-validation:

K-Fold Cross-Validation

➢ Better alternative for train-test split when the dataset is small

➢ Better for multiclass classification problems

➢ More reliable

➢ Useful for Model Selection



Hyperparameter Tuning:
- GridSearchCV
- RandomizedSearchCV



Parameters

Model Parameters Hyperparameters

These are the parameters of the model 
that can be determined by training with 
training data. These can be considered 
as internal Parameters.

Hyperparameters are parameters whose 
values control the learning process. These 
are adjustable parameters used to obtain 
an optimal model. External Parameters.

➢ Weights
➢ Bias

➢ Learning rate
➢ Number of Epochs
➢ n_estimators

Y   =   w*X   +   b

Types of Parameters



Hyperparameter Tuning

Best
Hyperparameters

Best
Model Parameters

Hyperparameter Tuning

Model Training



Hyperparameter Tuning refers to the process of choosing the optimum set 
of hyperparameters for a Machine Learning model. This process is also 
called Hyperparameter Optimization.

Hyperparameter Tuning

Hyperparameter Tuning Types:

GridSearchCV RandomizedSeaechCV

Support Vector Classifier: 
C: [1,5,10]
kernel: (‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’)



Model Selection in
Machine Learning



Model Selection in Machine Learning is the process of choosing the best suited model for a particular 
problem. Selecting a model depends on various factors such as the dataset, task, nature of the model, etc.

Model Selection

Two factors to be considered:

1. Logical Reason to select a model

2. Comparing the performance of the models



Models can be selected based on :

1. Type of Data available:
a. Images & Videos – CNN
b. Text data or Speech data – RNN
c. Numerical data – SVM, Logistic Regression, Decision trees, etc.

2. Based on the task we need to carry out:
a. Classification tasks – SVM, Logistic Regression, Decision trees, etc.
b. Regression tasks – Linear regression, Random Forest, Polynomial regression, etc.
c. Clustering tasks – K-Means Clustering, Hierarchical Clustering

Model Selection



Advantages:

1. Very simple to implement
2. Performs well on data with linear relationship

Disadvantages:

1. Not suitable for data having non-linear relationship
2. Underfitting issue
3. Sensitive to Outliers

Linear Regression



Advantages:

1. Easy to implement
2. Performs well on data with linear relationship
3. Less prone to over-fitting for low dimensional dataset

Disadvantages:

1. High dimensional dataset causes over-fitting
2. Difficult to capture complex relationships in a dataset
3. Sensitive to Outliers
4. Needs a larger dataset

Logistic Regression



Advantages:

1. Can be used for both Classification & Regression
2. Easy to interpret
3. No need for normalization or scaling
4. Not sensitive to outliers

Disadvantages:

1. Overfitting issue 
2. Small changes in the data alter the tree structure causing 

instability
3. Training time is relatively higher

Decision Tree



Precision,
Recall,
& F1 Score

Good?

Bad?



In Classification, Accuracy Score is the ratio of number of correct predictions
to the total number of input data points.

Accuracy Score   = 
Number of correct predictions

Total Number of data points
x  100   %

Number of correct predictions   =   128   

Total Number of data points   =   150

Accuracy Score   =   85.3 % 

from  sklearn.metrics import  accuracy_score

Accuracy Score



Confusion Matrix

Confusion Matrix is a matrix used for evaluating the performance of a 
Classification Model. It gives more information than the accuracy score.

TP + TN =  Correct Predictions

FP + FN  =  Wrong Predictions

sklearn.metrics.confusion_matrix



Precision

Precision   = 
True Positive

True Positive   +   False Positive

Precision   = 
True Positive

Total  Predicted  Positive

Precision is the ratio of number of True Positive to the total 
number of Predicted Positive. It measures, out of the total 
predicted positive, how many are actually positive.



Precision

Precision   = 
True Positive

True Positive   +   False Positive

Precision   = 
True Positive

Total  Predicted  Positive

Precision is the ratio of number of True Positive to the total 
number of Predicted Positive. It measures, out of the total 
predicted positive, how many are actually positive.

Precision measures the error caused by False Positives. 
Hence it is a good evaluation metric when False Positive
predictions are critical.

Example: Face Authentication



Recall

Recall   = 
True Positive

True Positive   +   False Negative

Recall   = 
True Positive

Total  Actual  Positive

Recall is the ratio of number of True Positive to the total 
number of Actual Positive. It measures, out of the total 
actual positive, how many are predicted as True Positive.



Recall

Recall   = 
True Positive

True Positive   +   False Negative

Recall   = 
True Positive

Total  Actual  Positive

Recall measures the error caused by False Negatives. Hence it 
is a good evaluation metric when False Negative predictions 
are critical.

Recall is the ratio of number of True Positive to the total 
number of Actual Positive. It measures, out of the total 
actual positive, how many are predicted as True Positive.

Example: Cancer Diagnosis



F1 Score

F1 Score     = 
Precision   x   Recall 

Precision   +   Recall
2   x   

F1 Score is an important evaluation metric for binary classification that combines 
Precision & Recall. F1 Score is the harmonic mean of Precision & Recall. 

This is a very useful metric when a dataset has imbalanced classes.



Precision, Recall & F1 Score

Example:
Precision   = 

True Positive

True Positive   +   False Positive

50

50   +   5
=

Precision   =   0.91 

Recall      = 
True Positive

True Positive   +   False Negative

50

50   +   10
=

Recall   =   0.83 

F1 Score     = 
Precision   x   Recall 

Precision   +   Recall
2   x   =

0.91   x   0.83 
2   x   

0.91   +   0.83 

F1 Score   =   0.87 
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