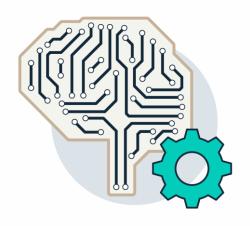
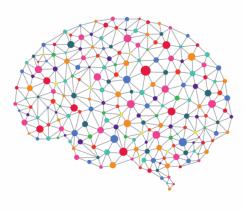
ShineBlue



VS

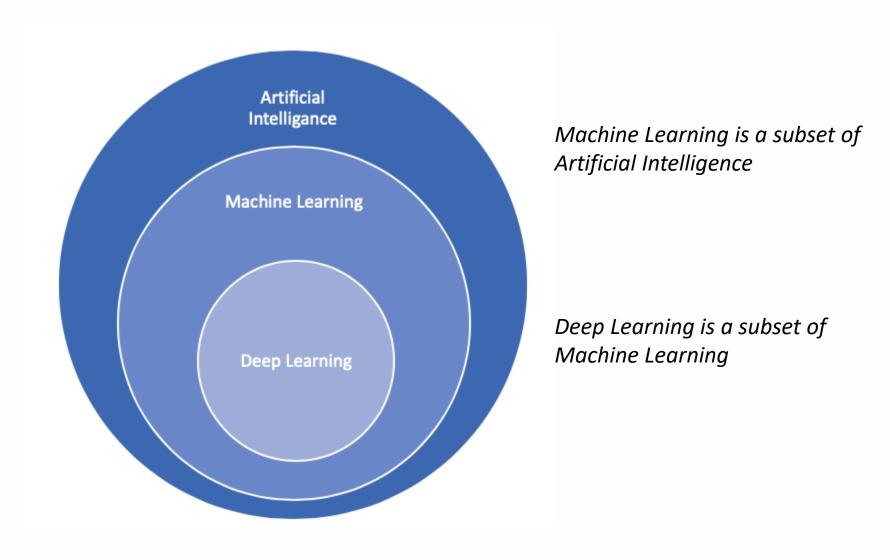


Artificial Intelligence

Machine Learning

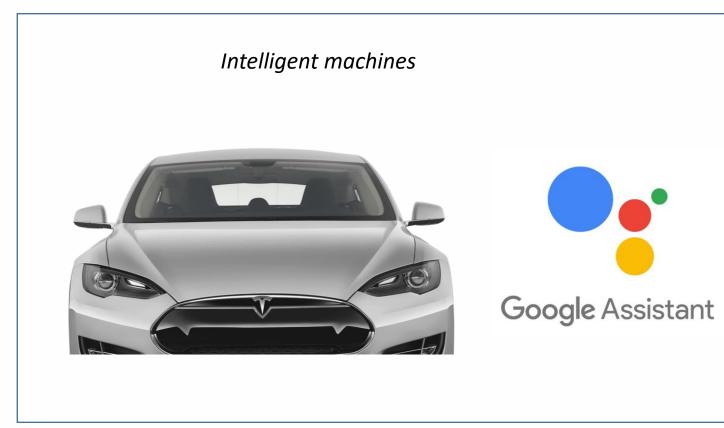
Deep Learning

Al vs ML vs DL



What is Artificial Intelligence?

Artificial Intelligence is a branch of Computer Science that is concerned with building smart & intelligent Machines



Machine Learning

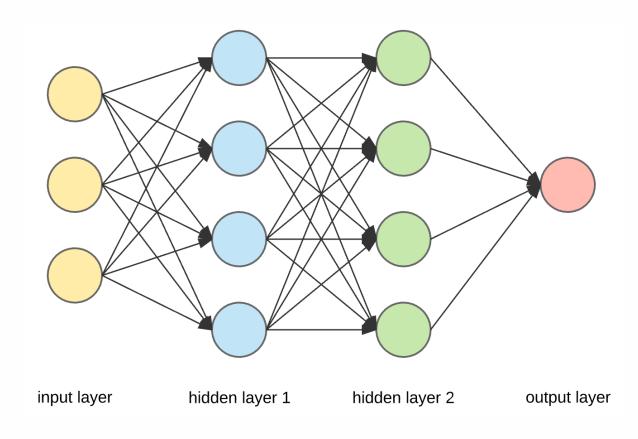
Machine Learning is a technique to implement AI that can learn from the data by themselves without being explicitly programmed.

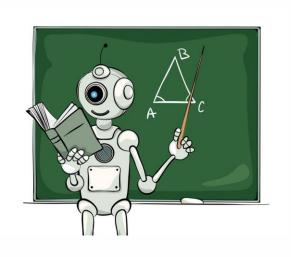
Iron Man

Captain America

Deep Learning

Deep Learning is a subfield of Machine Learning that uses
Artificial Neural Networks to learn from the data.







Supervised Learning

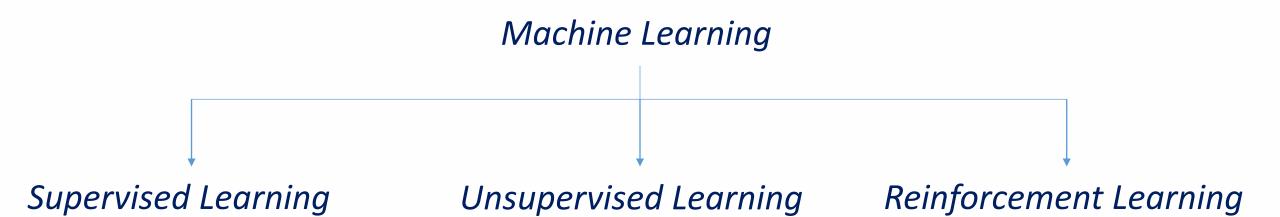
Unsupervised Learning

Reinforcement Learning

Machine Learning

Machine Learning is a technique to implement AI that can learn from the data by themselves without being explicitly programmed.

Types of Machine Learning



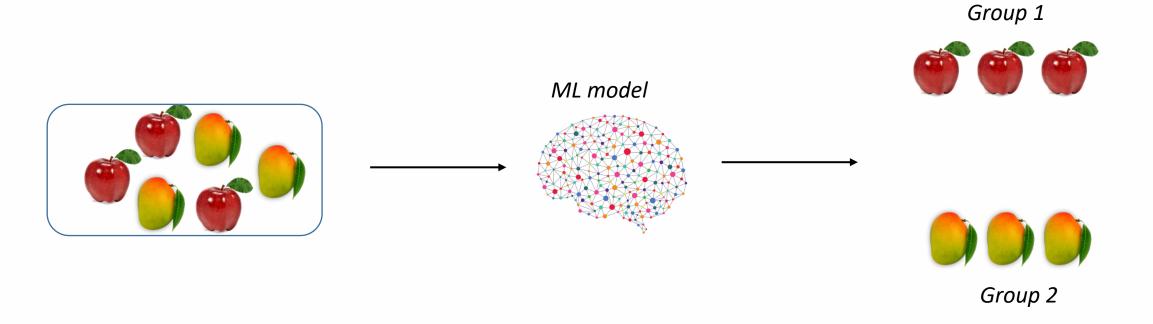
Supervised Learning

In Supervised Learning, the Machine Learning algorithm learns from Labelled Data

Apples ML model Apple Mangoes Unknown Image

Unsupervised Learning

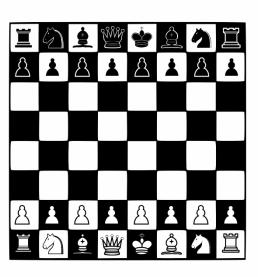
In Unsupervised Learning, the Machine Learning algorithm learns from Unlabelled Data



Reinforcement Learning

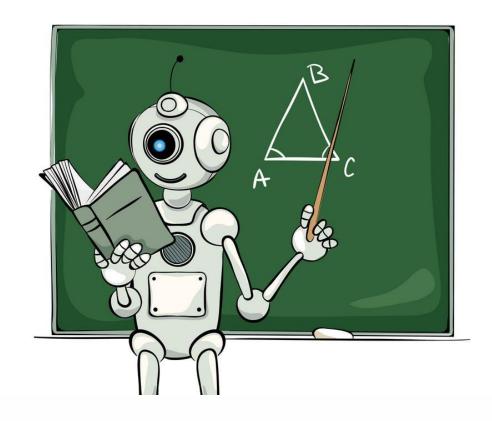
Reinforcement Learning is an area of Machine Learning concerned with how intelligent agents take actions in an environment to maximize its rewards.

- 1. Environment
- 2. Agent
- 3. Action
- 4. Reward



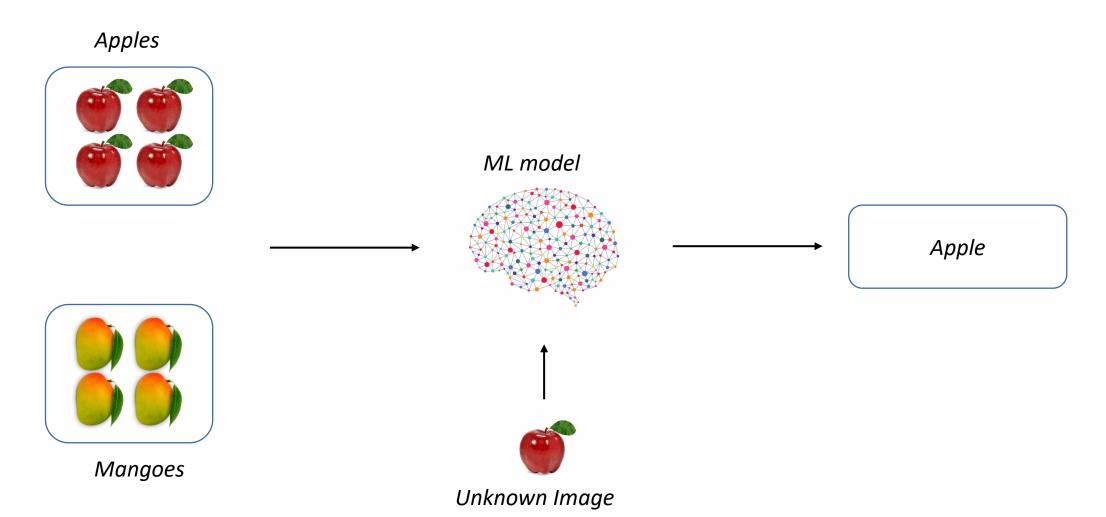
Environment

Supervised Learning: Classification & Regression



Supervised Learning

In Supervised Learning, the Machine Learning algorithm learns from Labelled Data



Types of Supervised Learning

Supervised Learning

Classification

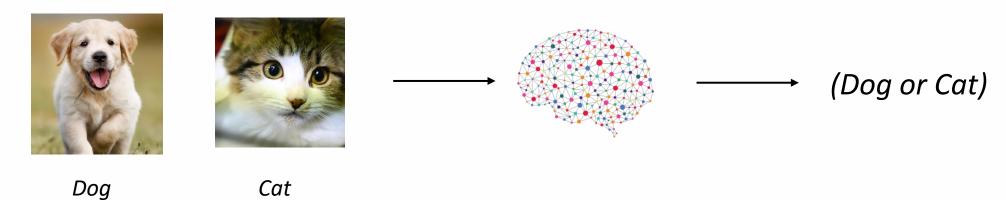
Classification is about predicting a class or discrete values Eg: Male or Female; True or False

Regression

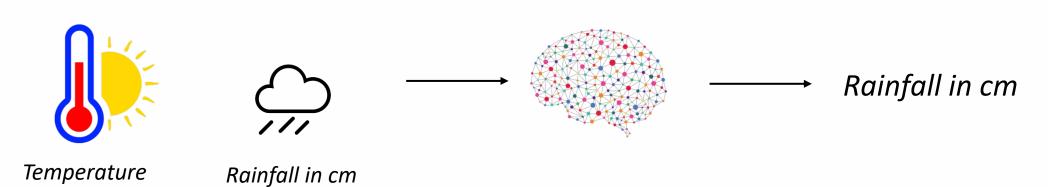
Regression is about predicting a quantity or continuous values Eg: Salary; age; Price.

Types of Supervised Learning

Classification:



Regression:



Algorithms

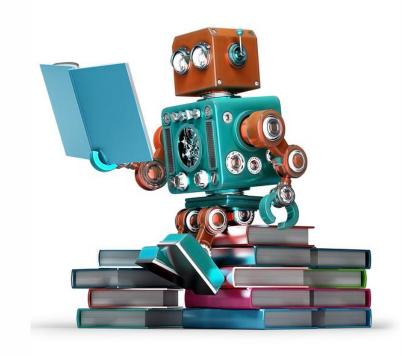
Classification:

- 1. Decision Tree Classification
- 2. Random Forest Classification
- 3. K-nearest Neighbor
- 4. Logistic Regression

Regression:

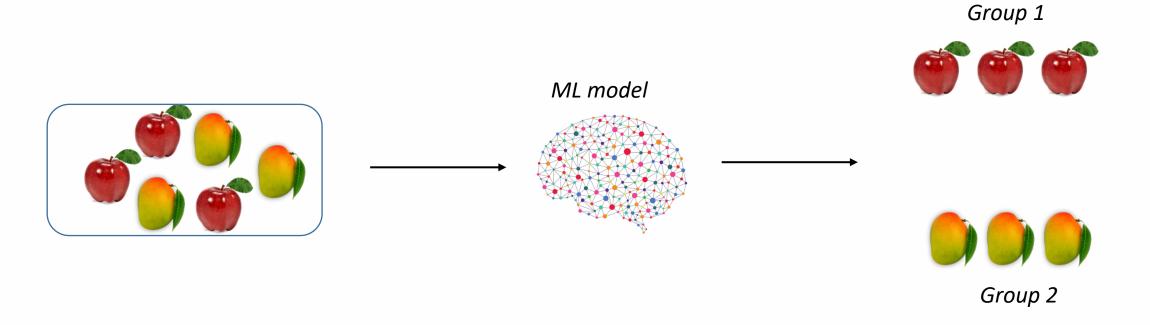
- 1. Polynomial Regression
- 2. Support Vector Machines Regressor

Unsupervised Learning: Clustering & Association



Unsupervised Learning

In Unsupervised Learning, the Machine Learning algorithm learns from Unlabelled Data



Types of Unsupervised Learning

Unsupervised Learning

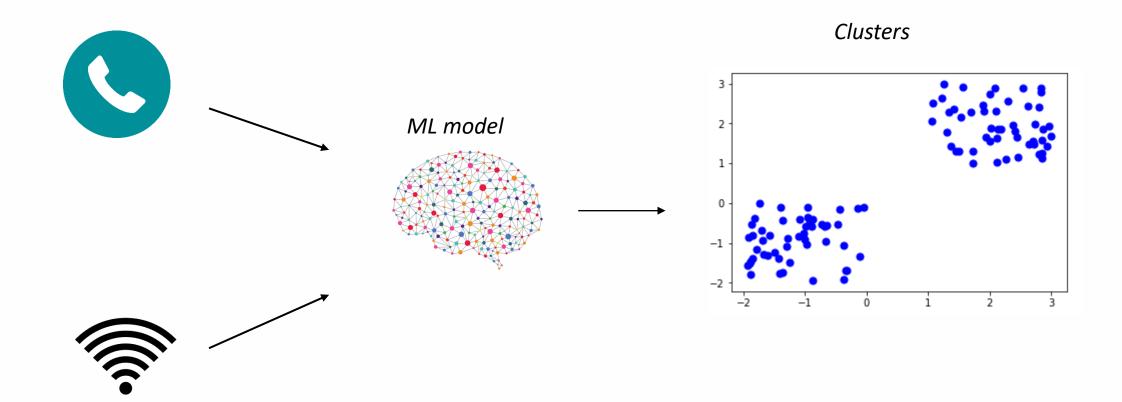
Clustering

Clustering is an unsupervised task which involves grouping the similar data points.

Association

Association is an unsupervised task that is used to find important relationship between data points

Clustering

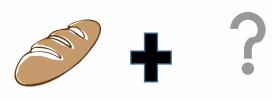


Association

Customer 1

Customer 2

Customer 3



- Bread
- Milk
- Fruits
- wheat

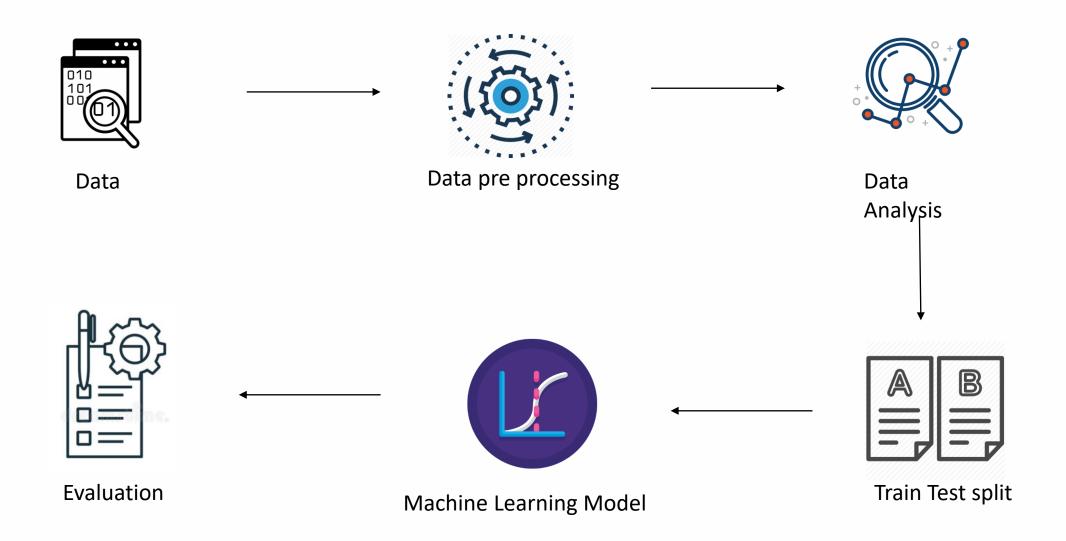
- Bread
- Milk
- Rice
- Butter

Now, when customer 3 goes and buys bread, it is highly likely that he will also buy milk.

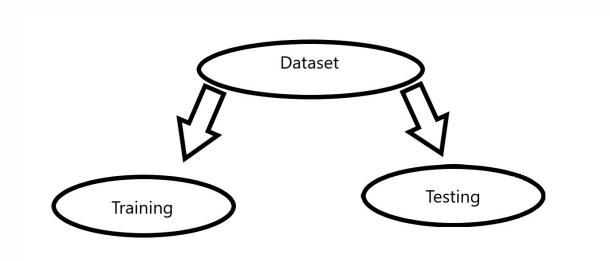
Unsupervised Learning Algorithms

- 1. K-Means Clustering
- 2. Hierarchical Clustering
- 3. Principal Component Analysis (PCA)
- 4. Apriori
- 5. Eclat

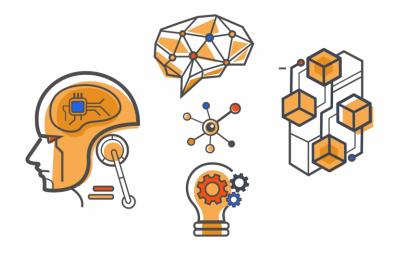
ML Project Work Flow



Training & Testing Data

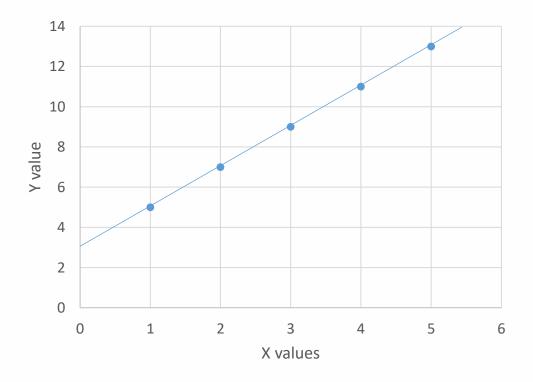


What is a Machine Learning Model?



Machine Learning

X	1	2	3	4	5
Υ	5	7	9	11	13



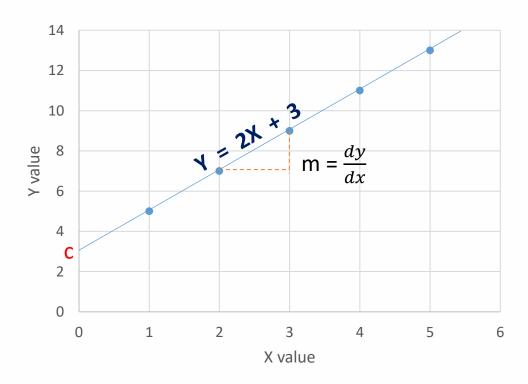
Y = mX + c

X --> X value

Y --> Y value

m --> Slope

c --> Intercept



Inference: The above Line equation is a function that relates X and Y.

For a given value of X, we can find the corresponding value of Y

Equation of a Straight Line : Y = mX + c

Find the values of m and c:

Point P1 (2,7)

Point P2 (3,9)

Slope, m =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 7}{3 - 2} = 2$$

$$m = 2$$

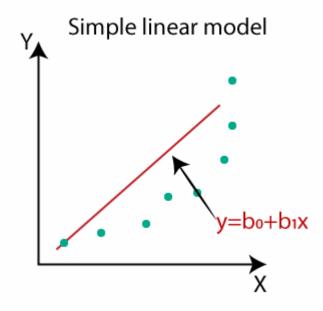
Intercept, c:

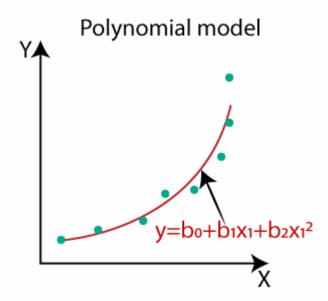
Point (4,11)

$$Y = 2X + c$$

$$11 = 2(4) + c$$

$$c = 3$$

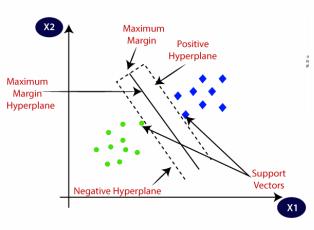




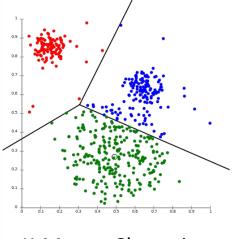
We cannot have a linear relationship between the variables all the time.

A **Machine Learning Model** is a function that tries to find the relationship between the Features and the Target variable.

It tries to find the pattern in the data, understand the data and trains on the data. Based on this learning, a Machine Learning Model makes Predictions and recognize patterns.



Support Vector Machine



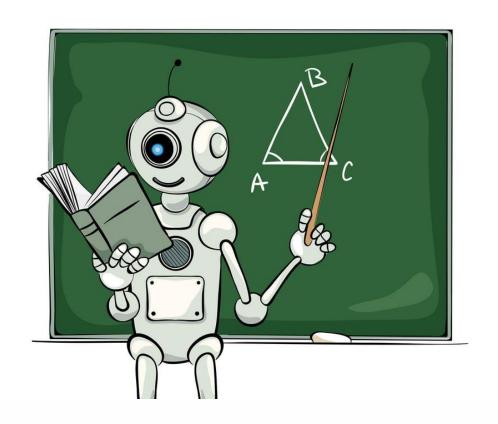
K-Means Clustering

Topics covered in this module:

- 1. What is a Machine Learning Model?
- 2. Supervised ML Models
- 3. Unsupervised ML Models
- 4. Model Selection
- 5. Overfitting

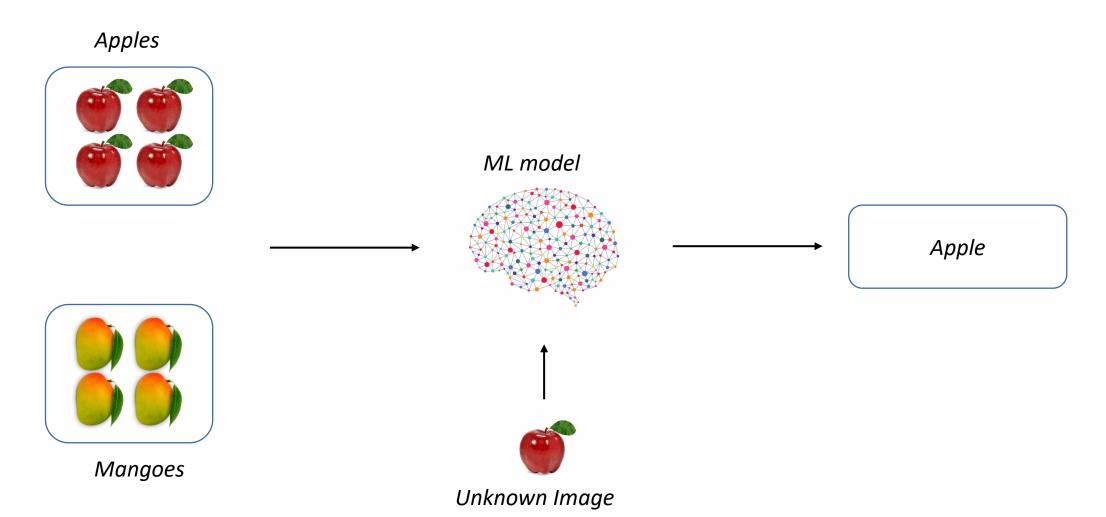
- 6. Underfitting
- 7. Model Optimization
- 8. Loss Function
- 9. Model Evaluation

Supervised Learning Models



Supervised Learning

In Supervised Learning, the Machine Learning algorithm learns from Labelled Data



Types of Supervised Learning

Supervised Learning

Classification

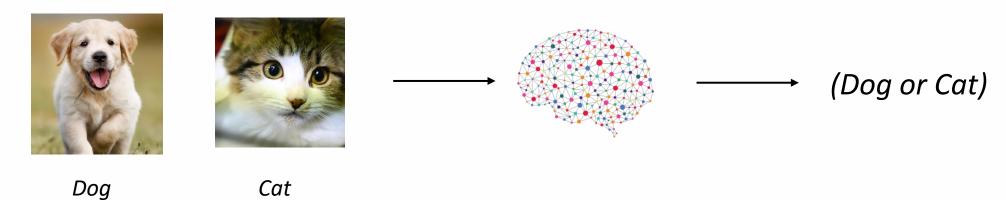
Classification is about predicting a class or discrete values Eg: Male or Female; True or False

Regression

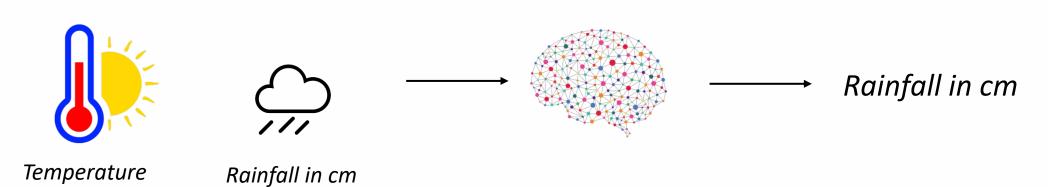
Regression is about predicting a quantity or continuous values Eg: Salary; age; Price.

Types of Supervised Learning

Classification:



Regression:



Supervised Learning Models

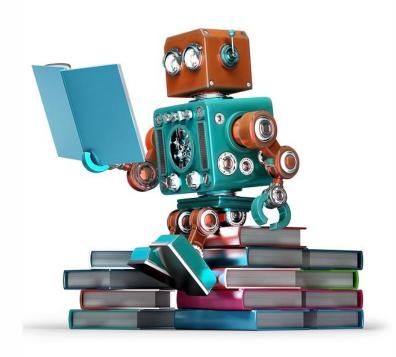
Classification:

- 1. Logistic Regression
- 2. Support Vector Machine Classifier
- 3. Decision Tree
- 4. K-Nearest Neighbors
- 5. Random Forest
- 6. Naïve Bayes Classifier

Regression:

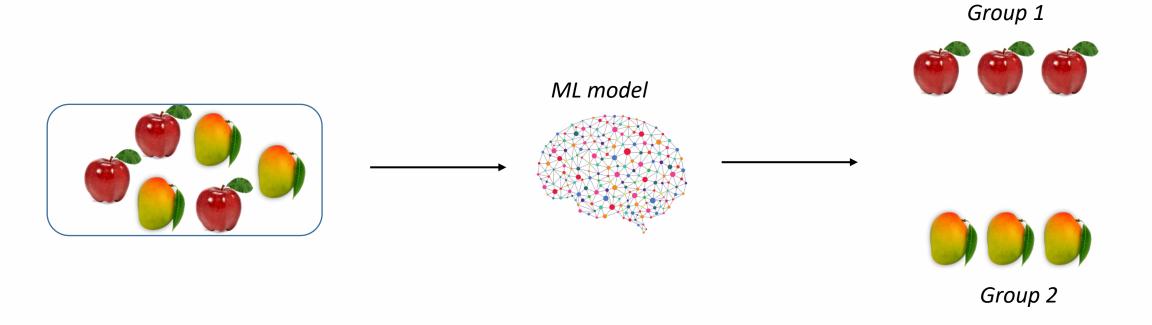
- 1. Linear Regression
- 2. Lasso Regression
- 3. Polynomial Regression
- 4. Support Vector Machine Regressor
- 5. Random Forest Regressor
- 6. Bayesian Linear Regressor

Unsupervised Learning Models



Unsupervised Learning

In Unsupervised Learning, the Machine Learning algorithm learns from Unlabelled Data



Types of Unsupervised Learning

Unsupervised Learning

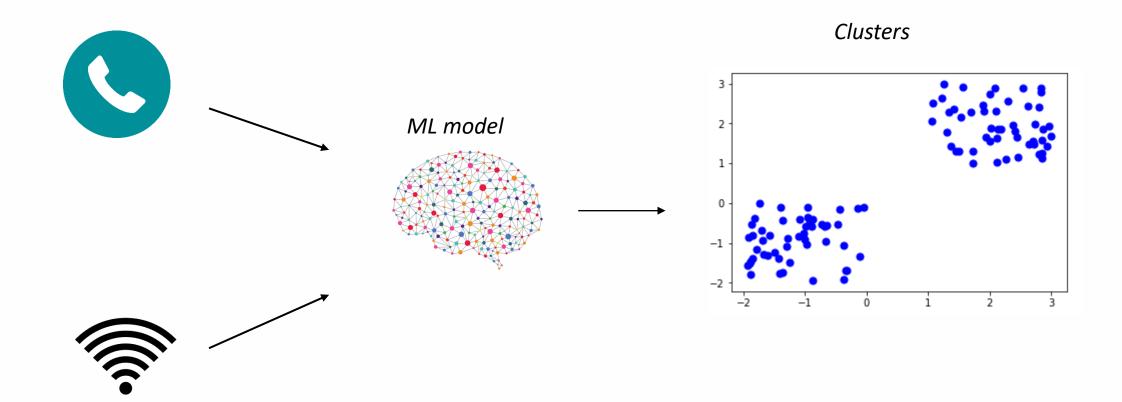
Clustering

Clustering is an unsupervised task which involves grouping the similar data points.

Association

Association is an unsupervised task that is used to find important relationship between data points

Clustering

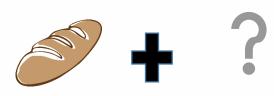


Association

Customer 1

Customer 2

Customer 3



- Bread
- Milk
- Fruits
- wheat

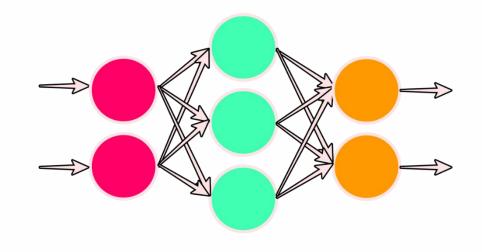
- Bread
- Milk
- Rice
- Butter

Now, when customer 3 goes and buys bread, it is highly likely that he will also buy milk.

Unsupervised Learning Models

- 1. K-Means Clustering
- 2. Hierarchical Clustering
- 3. Principal Component Analysis (PCA)
- 4. Apriori
- 5. Eclat

How to choose the right Machine Learning Model? (Model Selection)

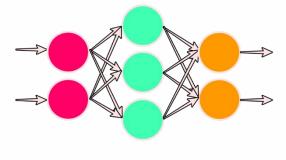


Model Selection

Model Selection in Machine Learning is the process of choosing the best suited model for a particular problem. Selecting a model depends on various factors such as the dataset, task, nature of the model, etc.

Logistic Regression

K-Means Clustering



Neural Network

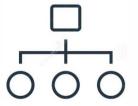
Model Selection

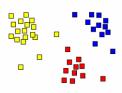
Models can be selected based on:

- 1. Type of Data available:
 - a. Images & Videos CNN
 - b. Text data or Speech data RNN
 - c. Numerical data SVM, Logistic Regression, Decision trees, etc.

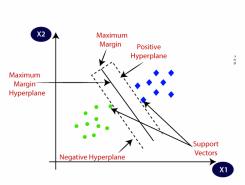
2. Based on the task we need to carry out:

- a. Classification tasks SVM, Logistic Regression, Decision trees, etc.
- b. Regression tasks Linear regression, Random Forest, Polynomial regression, etc.
- c. Clustering tasks K-Means Clustering, Hierarchical Clustering

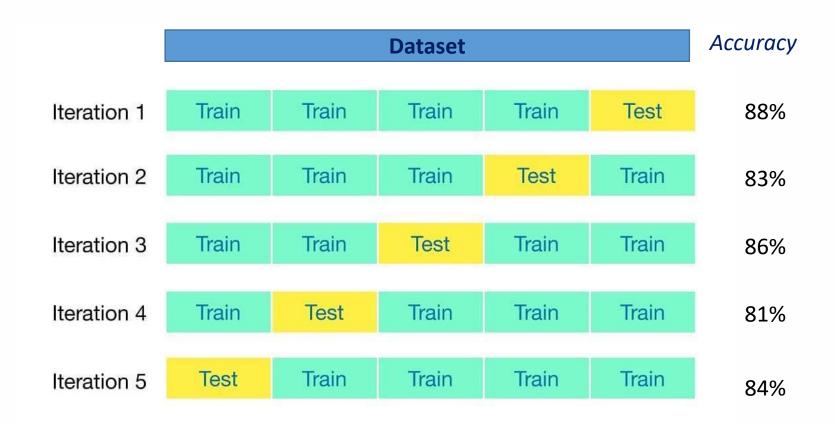




Cross Validation

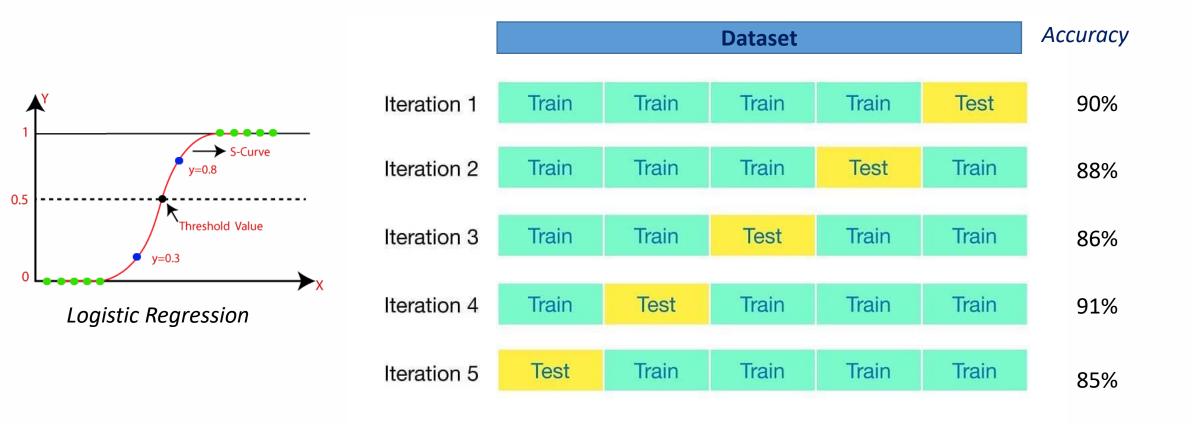


Support Vector Machine



Mean Accuracy =
$$\frac{88 + 83 + 86 + 81 + 84}{}$$
 = 84.4 %

Cross Validation



Mean Accuracy =
$$\frac{90 + 88 + 86 + 91 + 85}{5}$$
 = 88 %

Cross Validation

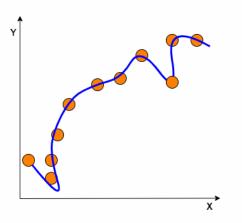
✓ Accuracy score for SVM = 84.4 %

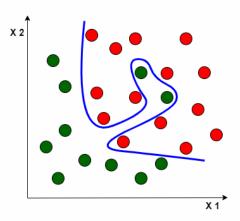
✓ Accuracy score for Logistic Regression = 88 %

Cross Validation Implementation:

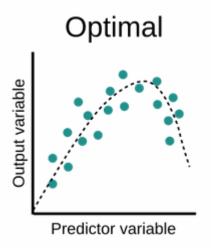
```
>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_score
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> print(cross_val_score(lasso, X, y, cv=3))
[0.33150734 0.08022311 0.03531764]
```

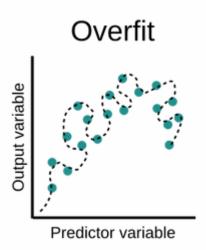
Overfitting in Machine Learning





Overfitting refers to a model that models the training data too well. Overfitting happens when a model learns the detail and noise in the training dataset to the extent that it negatively impacts the performance of the model.

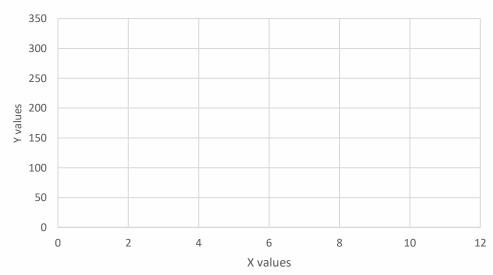




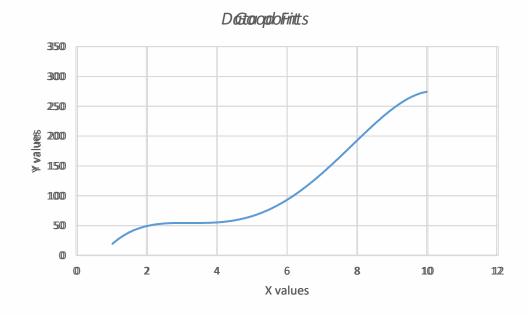
Sign that the model has Overfitted: High Training data Accuracy & very low Test data Accuracy

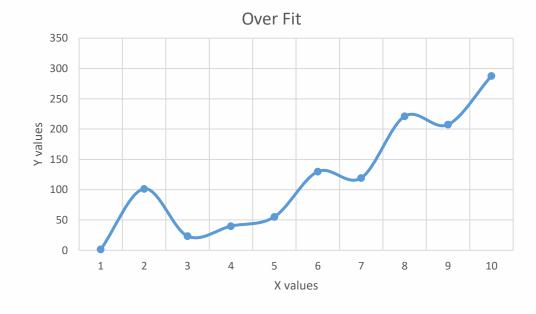
X	1	2	3	4	5	6	7	8	9	10
Υ	1.38	101.41	23.34	39.89	55.23	129.91	119.33	221.09	207.43	287.80

Data points



X	1	2	3	4	5	6	7	8	9	10
Υ	1.38	101.41	23.34	39.89	55.23	129.91	119.33	221.09	207.43	287.80





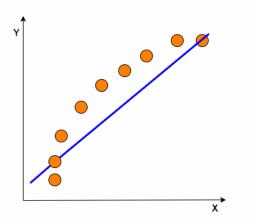
Causes for Overfitting:

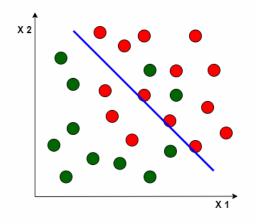
- 1. Less Data
- 2. Increased Complexity of the model
- 3. More number of layers in Neural Network

Preventing Overfitting by:

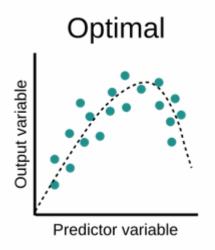
- 1. Using more data
- 2. Reduce the number of layers in the Neural network
- 3. Early Stopping
- 4. Bias Variance Tradeoff
- 5. Use Dropouts

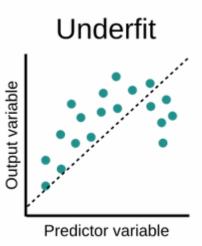
Underfittingin Machine Learning





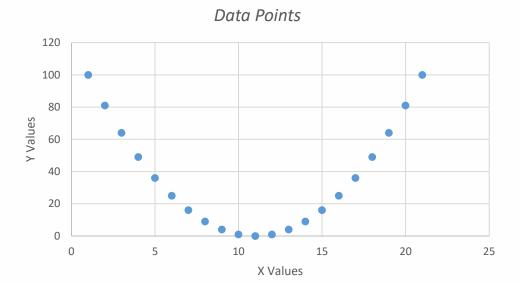
Underfitting happens when the model **does not learn enough** from the data. Underfitting occurs when a machine learning model cannot capture the underlying trend of the data



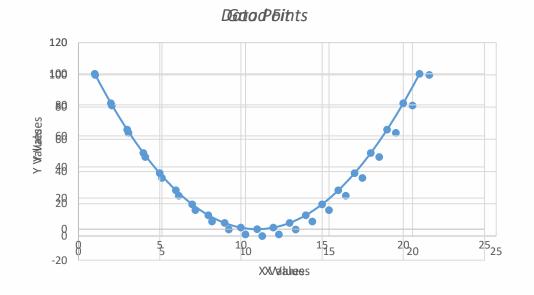


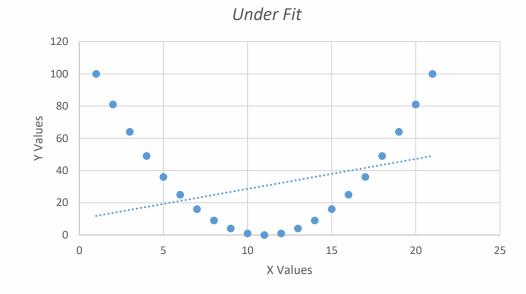
Sign that the model has Underfitted: Very Low Training data Accuracy

X	-10	-9	-8	-7	•••••	0	•••••	7	8	9	10
Υ	100	81	64	49		0		49	64	81	100



X	(-10	-9	-8	-7	••••••	0	•••••	7	8	9	10
Y	1	100	81	64	49		0		49	64	81	100





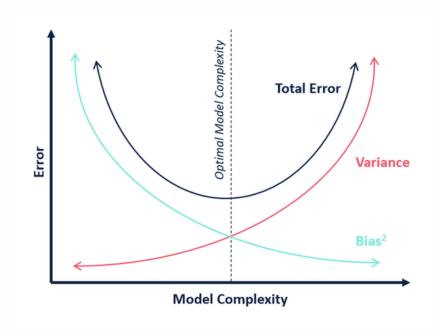
Causes for Underfitting:

- 1. Choosing a wrong model
- 2. Less complexity of the model
- 3. Less variance but high bias

Prevent Underfitting by:

- 1. Choosing the correct model appropriate for the problem
- 2. Increasing the complexity of the model
- 3. More number of parameters to the model
- 4. Bias Variance Tradeoff

Bias – Variance Tradeoff in Machine Learning



Loss Function in Machine Learning

$$\frac{1}{n}\sum_{i=1}^n (Y_i - \hat{{Y}}_i)^2$$

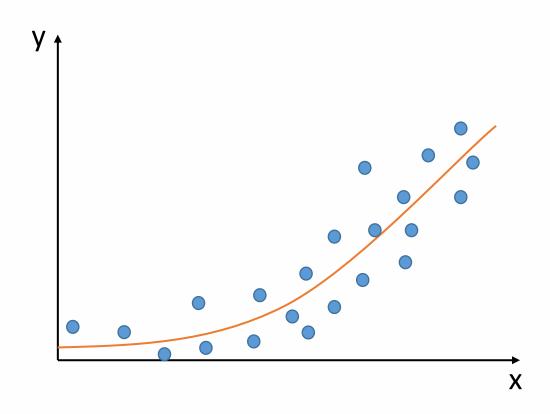
Loss function measures how far an estimated value is from its true value.

It is helpful to determine which model performs better & which parameters are better.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Types of Loss Function:

- Cross Entropy Loss
- Squared Error Loss
- KL Divergence



 $y = 0.0000003x^3 + 0.0002x^2 + 0.010x + 0.025$

Degree 3 Polynomial

$$y_1 = 0.0000015x^3 + 0.0042x^2 + 0.020x + 0.035$$

$$y_2 = 0.0000023x^3 + 0.0001x^2 + 0.015x + 0.020$$

$$y = 0.0000003x^3 + 0.0002x^2 + 0.010x + 0.025$$

$$y_3 = 0.0000045x^3 + 0.0003x^2 + 0.040x + 0.028$$

X	У	y ₁	y ₂	y ₃
0.30	0.35	0.38	0.39	0.41
0.45	0.48	0.45	0.47	0.56
0.50	0.55	0.59	0.58	0.63
0.55	0.63	0.65	0.69	0.70
0.66	0.72	0.75	0.78	0.78

X	y	y ₁	y ₂	y ₃
0.30	0.35	0.38	0.39	0.41
0.45	0.48	0.45	0.47	0.56
0.50	0.55	0.59	0.58	0.63
0.55	0.63	0.65	0.69	0.70
0.66	0.72	0.75	0.78	0.78

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$Loss_1 = [(0.35-0.38)^2 + (0.48-0.45)^2 + (0.55-0.59)^2 + (0.63-0.65)^2 + (0.72-0.75)^2] / 5$$

$$Loss_1 = 0.173$$

Low Loss value → High Accuracy

Loss function measures how far an estimated value is from its true value.

It is helpful to determine which model performs better & which parameters are better.

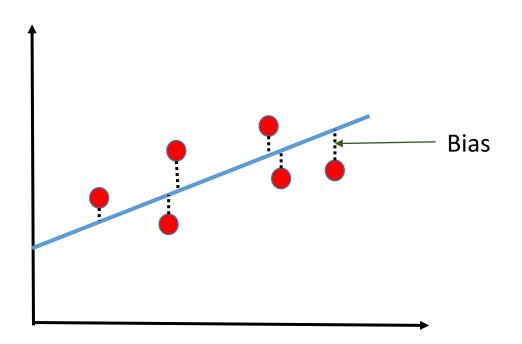
Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

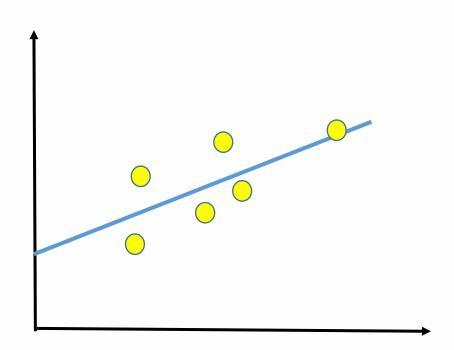
Types of Loss Function:

- Cross Entropy Loss
- Squared Error Loss
- KL Divergence

Bias:

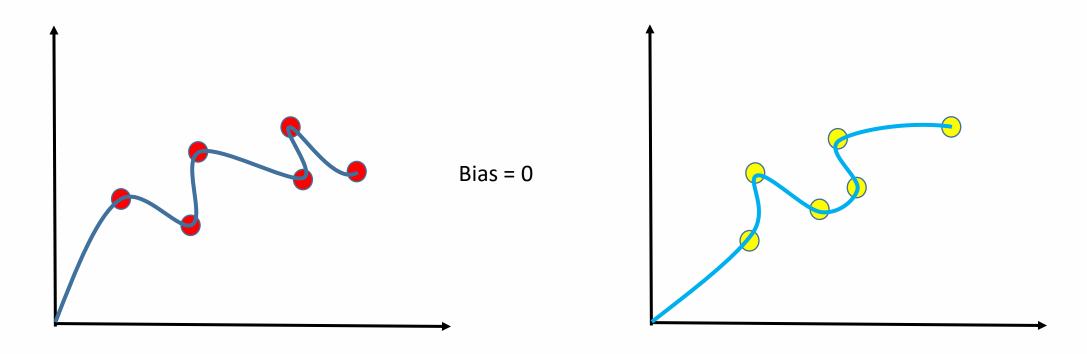
Bias is the difference between the average prediction of our model and the correct value which we are trying to predict.



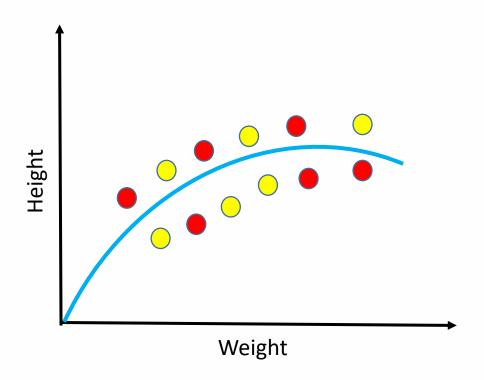


Variance:

Variance is the amount that the estimate of the target function will change if different training data was used.

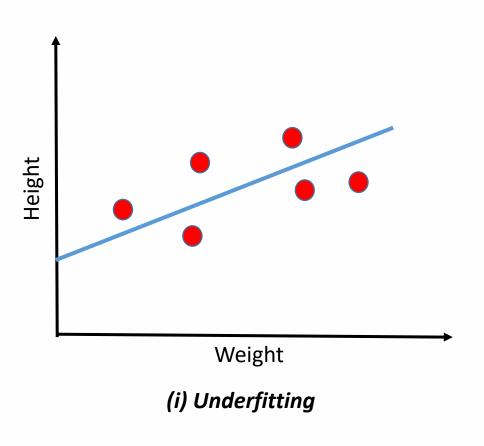


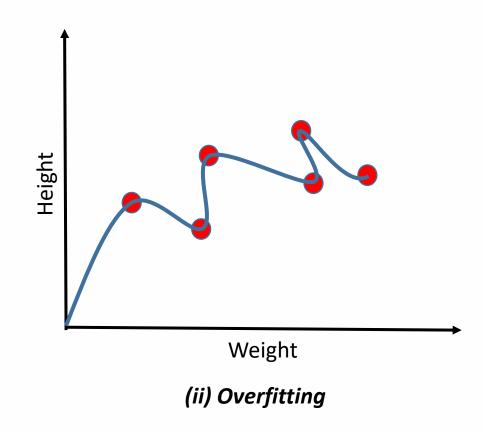
Problem statement: Identify an appropriate model to predict the Height of a person, When their weight is given.



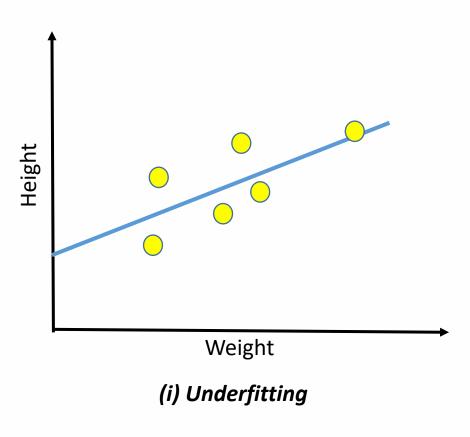
Underfitting & Overfitting

(Plot on training data)



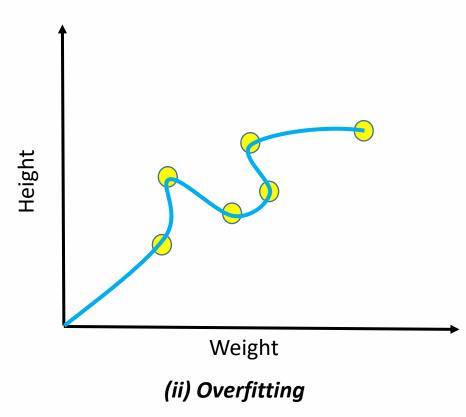


(Testing with different data)



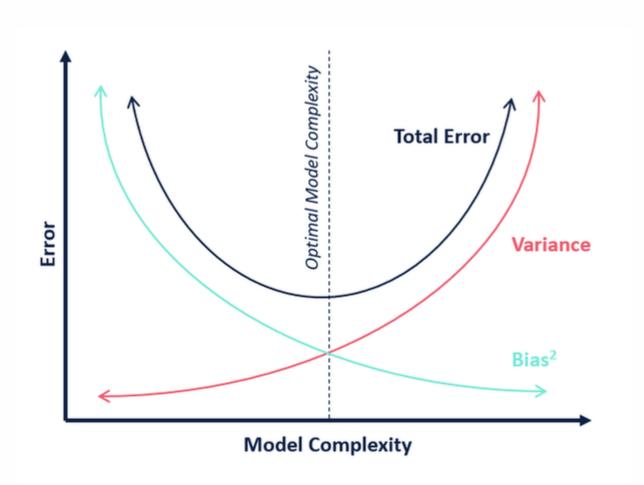
Inference: a. High Bias

b. Low Variance



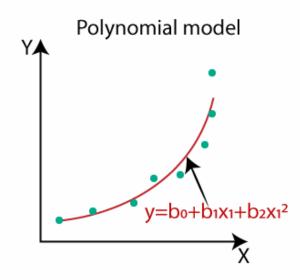
Inference: a. Low Bias

b. High Variance



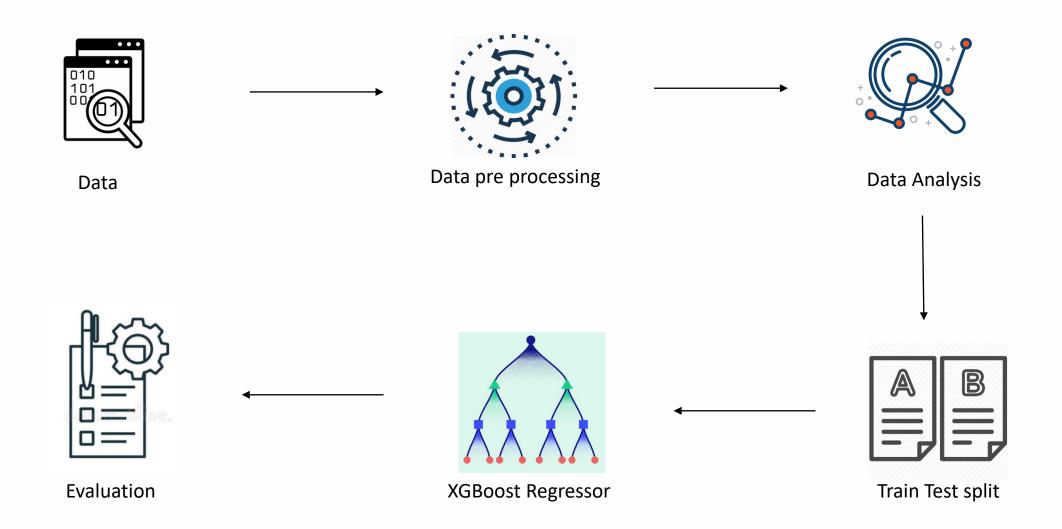
Techniques to have better Bias – Variance Tradeoff :

- 1. Good Model Selection
- 2. Regularization
- 3. Dimensionality Reduction
- 4. Ensemble methods



Model Evaluation in Machine Learning

Work Flow of a ML Project



Types of Supervised Learning

Supervised Learning

Classification

Classification is about predicting a class or discrete values Eg: Male or Female; True or False

Evaluation metric for

Classification: Accuracy score

Regression

Regression is about predicting a quantity or continuous values Eg: Salary; age; Price.

Evaluation metric for

Regression: Mean Absolute Error

Accuracy Score

In Classification, Accuracy Score is the ratio of number of correct predictions to the total number of input data points.

Number of correct predictions = 128

Accuracy Score = 85.3 %

Total Number of data points = 150

from sklearn.metrics import accuracy_score

Mean Squared Error

Mean Squared Error measures the average of the squares of the errors, that is, the average squared difference between the estimated values and the actual value.

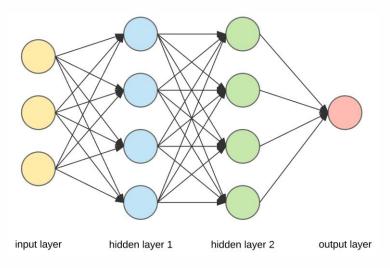
$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Actual Value ($Y_i = 140 \text{ mg/dL}$)

Predicted Value ($Y_i = 160 \text{ mg/dL}$)

from sklearn.metrics import mean_squared_error

Model Parameters & Hyperparameters



Types of Parameters

Parameters

Model Parameters

These are the parameters of the model that can be determined by training with training data. These can be considered as internal Parameters.

- Weights
- **Bias**

$$Y = w^*X + k$$

Hyperparameters

Hyperparameters are parameters whose values control the learning process. These are adjustable parameters used to obtain an optimal model. External Parameters.

- > Learning rate
- > Number of Epochs

Model Parameters

Weights: Weight decides how much influence the input will have on the output.

Applicant's Details

Name	Degree	College	С	C++	Python	Height	Weight	No. of Backlogs
Α	B.E	ABC college	√	×	✓	165	72	1
В	M.E	XYZ College	√	√	×	168	80	0
С	M.C.A	State College	√	×	×	175	67	0
D	B.E	ZYX College	√	√	✓	168	70	2

Model Parameters

Weights:

Weight decides how much influence the input will have on the output.

$$Y = w*X + b$$

$$Y = w_1^* X_1 + w_2^* X_2 + w_3^* X_3 + b$$

X – feature or input variable

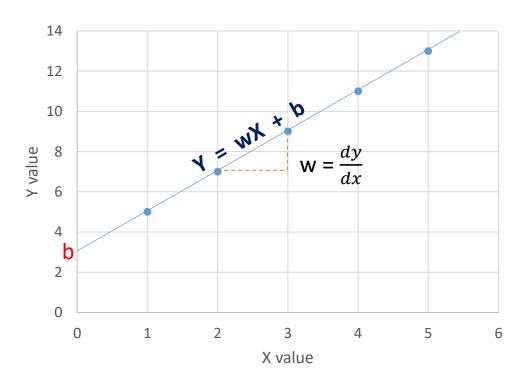
Y – Target or output variable

w – weight

b – bias

Bias:

Bias is the offset value given to the model. Bias is used to shift the model in a particular direction. It is similar to a Y-intercept. 'b' is equal to 'Y' when all the feature values are zero.



$$Y = wX + b$$

Bias:

Bias is the offset value given to the model. Bias is used to shift the model in a particular direction. It is similar to a Y-intercept. 'b' is equal to 'Y' when all the feature values are zero.

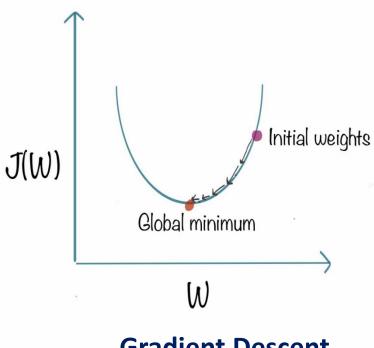
Hyperparameters

Learning Rate:

The **Learning Rate** is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function.

Number of Epochs:

Number of Epochs represents the number of times the model iterates over the entire dataset.



Gradient Descent

Types of Parameters

Parameters

Model Parameters

These are the parameters of the model that can be determined by training with training data. These can be considered as internal Parameters.

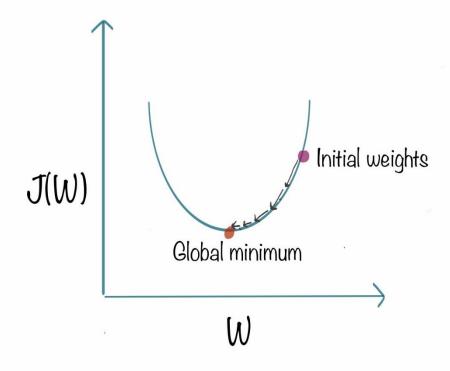
- Weights
- > Bias

Hyperparameters

Hyperparameters are parameters whose values control the learning process. These are adjustable parameters used to obtain an optimal model. External Parameters.

- > Learning rate
- > Number of Epochs

Gradient Descent in Machine Learning



Model Parameters

Weights:

Weight decides how much influence the input will have on the output.

$$Y = w*X + b$$

$$Y = w_1^* X_1 + w_2^* X_2 + w_3^* X_3 + b$$

X – feature or input variable

Y – Target or output variable

w – weight

b – bias

Bias:

Bias is the offset value given to the model. Bias is used to shift the model in a particular direction. It is similar to a Y-intercept. 'b' is equal to 'Y' when all the feature values are zero.

Hyperparameters

Learning Rate:

The **Learning Rate** is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function.

Number of Epochs:

Number of Epochs represents the number of times the model iterates over the entire dataset.

Loss Function

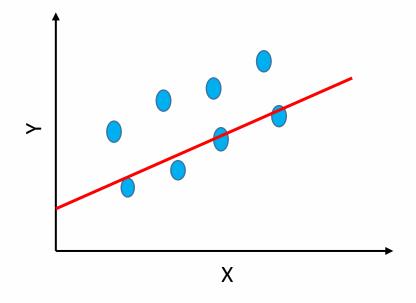
Loss function measures how far an estimated value is from its true value.

It is helpful to determine which model performs better & which parameters are better.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Model Optimization

Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.

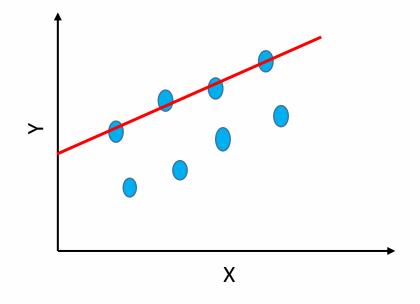


$$Y = w_1 X + b_1$$

(w₁ & b₁ are the parameters of the line)

Model Optimization

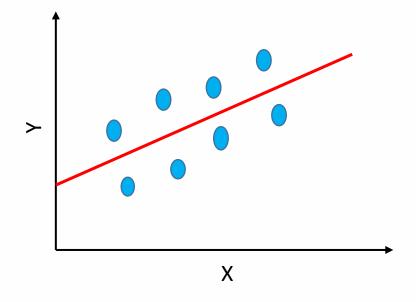
Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.



$$Y = w_2X + b_2$$

Model Optimization

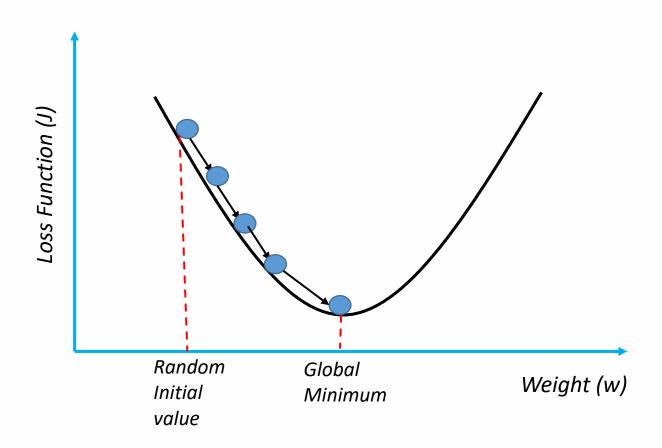
Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.



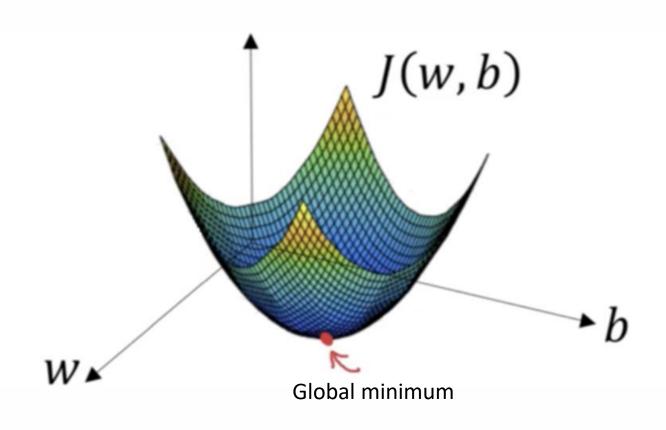
$$Y = w_3X + b_3$$

Hence, w₃ & b₃ are the best parameters

Gradient Descent



Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the loss function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w = w - L*dw$$

$$b = b - L*db$$

w --> weight

b --> bias

L --> Learning Rate

dw --> Partial Derivative of loss function with respect to m w

db --> Partial Derivative of loss function with respect to 9/ 1

Linear Regression - intuition

Machine Learning

Data

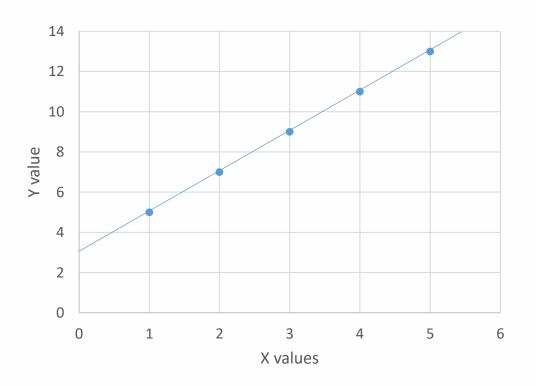
Machine Learning model

Experience in Years	0	2	4	5	6
Salary	2,00,000	4,00,000	8,00,000	10,00,000	12,00,000

What would be the **salary** of a person with **3 years of Experience?**

~ ₹ 650000 per Year

X	1	2	3	4	5
Υ	5	7	9	11	13



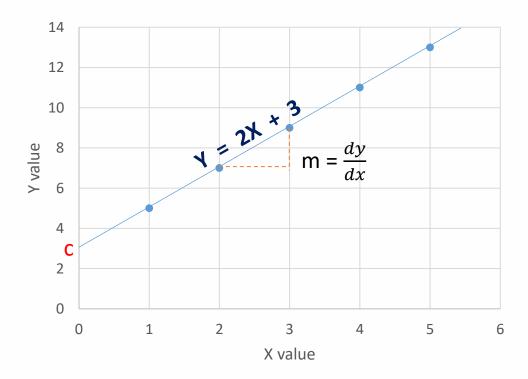
Y = mX + c

X --> X value

Y --> Y value

m --> Slope

c --> Intercept



Inference: The above Line equation is a function that relates X and Y.

For a given value of X, we can find the corresponding value of Y

Equation of a Straight Line : Y = mX + c

Find the values of m and c:

Point P1 (2,7)

Point P2 (3,9)

Slope, m =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 7}{3 - 2} = 2$$

$$m = 2$$

Intercept, c:

Point (4,11)

$$Y = 2X + c$$

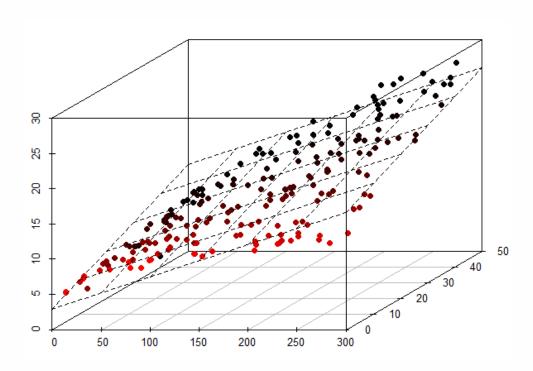
$$11 = 2(4) + c$$

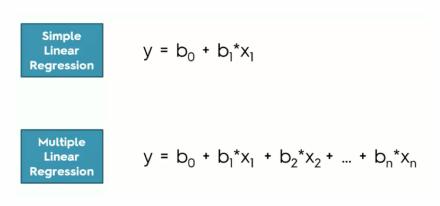
$$c = 3$$

What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one dependent variable based on two or more independent variables.



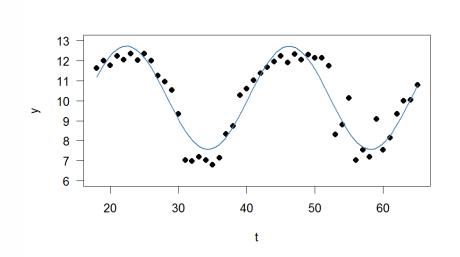


Advantages:

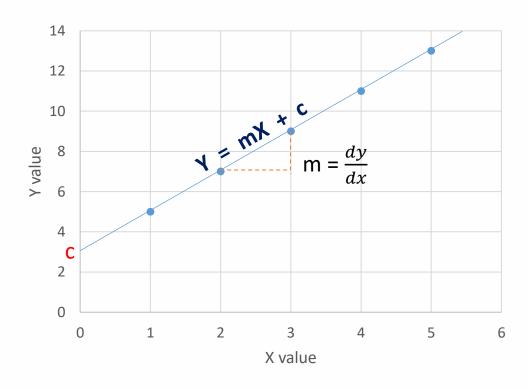
- 1. Very simple to implement
- 2. Performs well on data with linear relationship

Disadvantages:

- 1. Not suitable for data having non-linear relationship
- 2. Underfitting issue
- 3. Sensitive to Outliers



Linear Regression - Mathematical Understanding



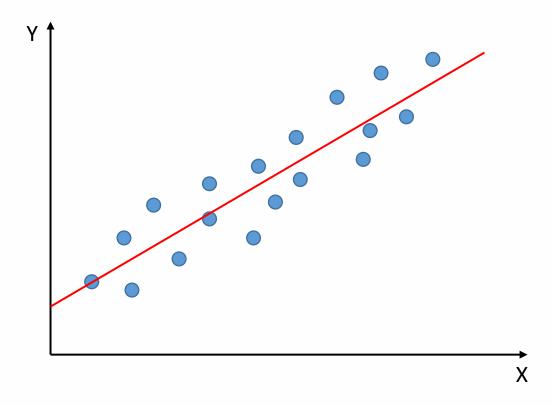
$$Y = mX + c$$

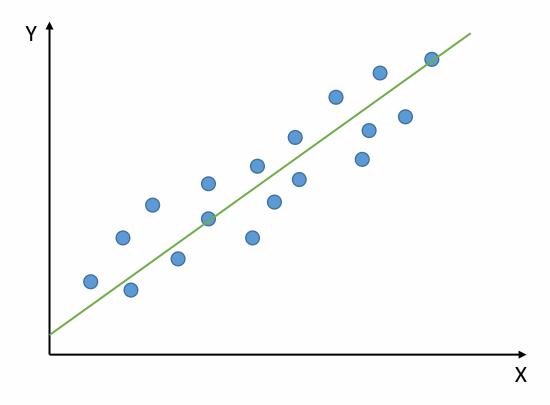
X --> X value

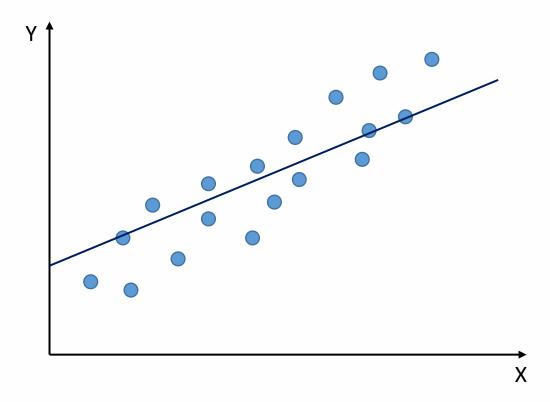
Y --> Y value

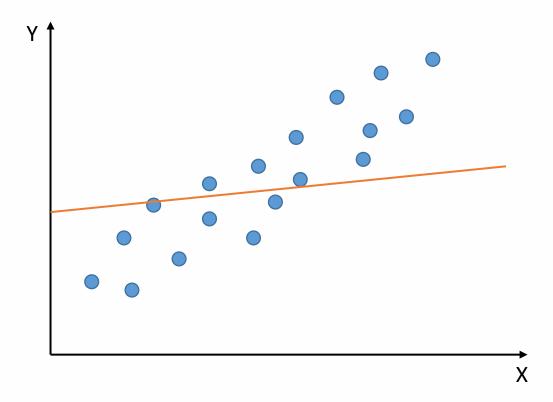
m --> Slope

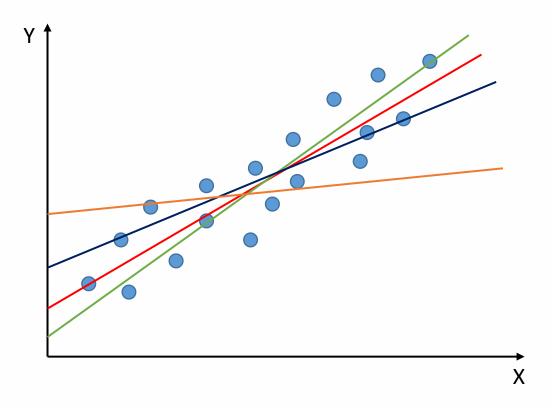
c --> Intercept









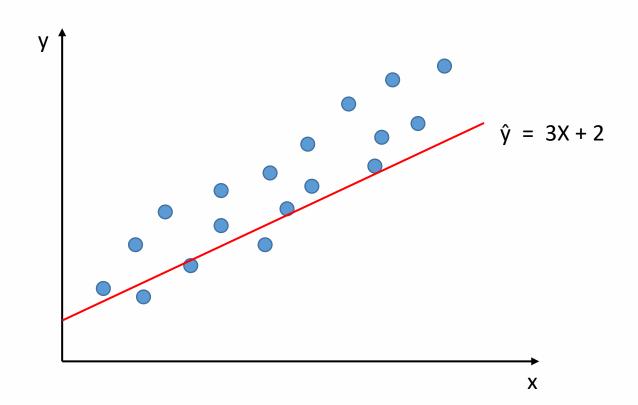


Loss function measures how far an estimated value is from its true value.

It is helpful to determine which model performs better & which parameters are better.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Randomly assigned Parameters: m = 3; c = 2



Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

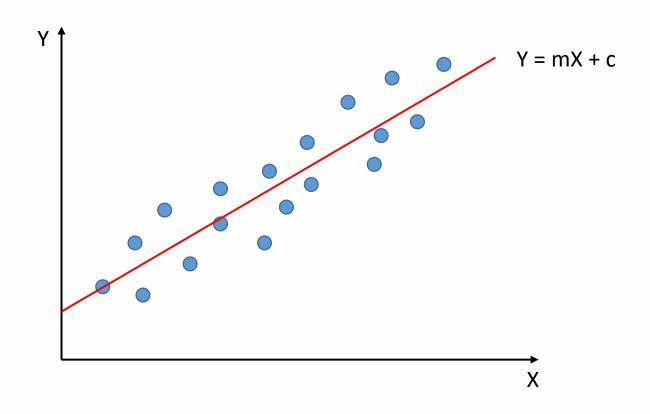
Loss =
$$\frac{1}{n}\sum_{i=1}^n (Y_i-\hat{Y}_i)^2$$

Loss =
$$[(10-8)^2 + (14-11)^2 + (18-14)^2 + (22-17)^2 + (26-20)^2] / 5$$

Loss =
$$[4+9+16+25+36] / 5$$

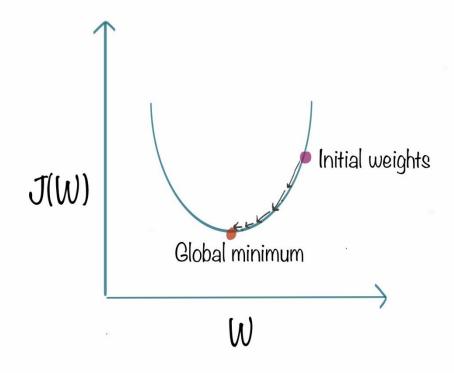
$$Loss = 18$$

Linear Regression



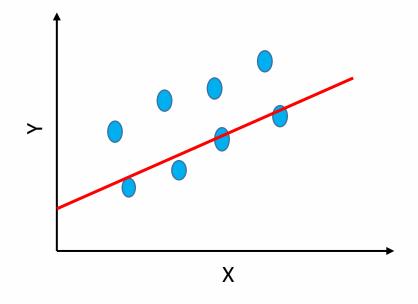
Best Fit

Gradient Descent for Linear Regression



Model Optimization

Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.

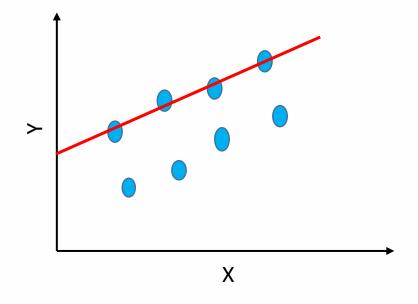


$$Y = m_1 X + C_1$$

(m₁ & C₁ are the parameters of the line)

Model Optimization

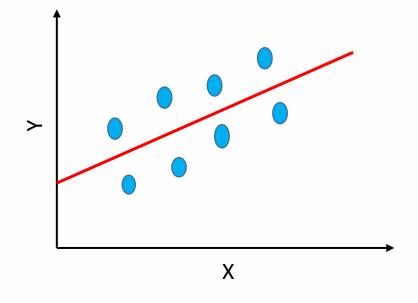
Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.



$$Y = m_2X + C_2$$

Model Optimization

Optimization refers to determining best parameters for a model, such that the loss function of the model decreases, as a result of which the model can predict more accurately.



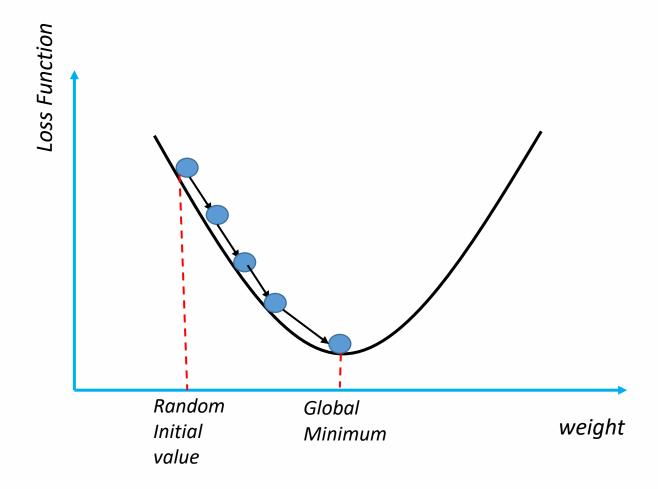
$$Y = m_3 X + C_3$$

Hence, m₃ & C₃ are the best parameters

Loss function measures how far an estimated value is from its true value.

It is helpful to determine which model performs better & which parameters are better.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$



Gradient Descent is an optimization algorithm used for minimizing the loss function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$m = m - LD_m$$

$$c = c - LDc$$

m --> slope

c --> intercept

L --> Learning Rate

D_m --> Partial Derivative of loss function with respect to m

D_c --> Partial Derivative of loss function with respect to c

$$D_{m} = \frac{\partial (Cost Function)}{\partial m} = \frac{\partial}{\partial m} \left(\frac{1}{n} \sum_{i=0}^{n} (y_{i} - y_{i pred})^{2} \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial m} \left(\sum_{i=0}^{n} (y_{i} - (mx_{i} + c))^{2} \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial m} \left(\sum_{i=0}^{n} (y_{i}^{2} + m^{2}x_{i}^{2} + c^{2} + 2mx_{i}c - 2y_{i}mx_{i} - 2y_{i}c) \right)$$

$$= \frac{-2}{n} \sum_{i=0}^{n} x_{i} (y_{i} - (mx_{i} + c))$$

$$= \frac{-2}{n} \sum_{i=0}^{n} x_{i} (y_{i} - y_{i pred})$$

$$D_{c} = \frac{\partial(Cost\ Function)}{\partial c} = \frac{\partial}{\partial c} \left(\frac{1}{n} \sum_{i=0}^{n} (y_{i} - y_{i\ pred})^{2} \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial c} \left(\sum_{i=0}^{n} (y_{i} - (mx_{i} + c))^{2} \right)$$

$$= \frac{1}{n} \frac{\partial}{\partial c} \left(\sum_{i=0}^{n} (y_{i}^{2} + m^{2}x_{i}^{2} + c^{2} + 2mx_{i}c - 2y_{i}mx_{i} - 2y_{i}c) \right)$$

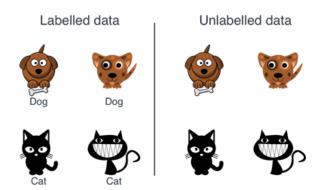
$$= \frac{-2}{n} \sum_{i=0}^{n} (y_{i} - (mx_{i} + c))$$

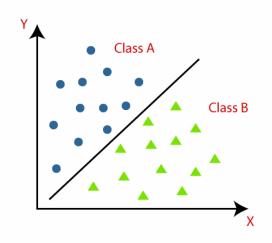
$$\frac{-2}{n} \sum_{i=0}^{n} (y_{i} - y_{i\ pred})$$

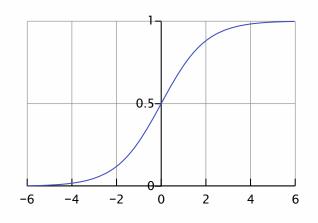
Logistic Regression - intuition

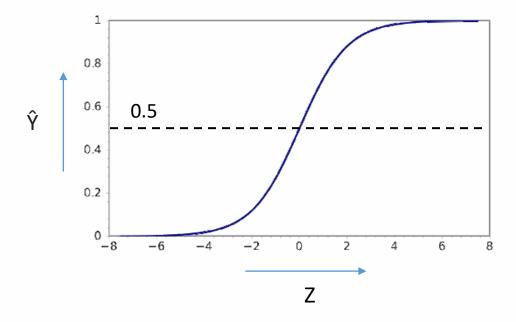
About Logistic Regression:

- 1. Supervised Learning Model
- 2. Classification model
- 3. Best for Binary Classification Problem
- 4. Uses Sigmoid function









$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}}$$

$$Z = w.X + b$$

Sigmoid Function

$$\hat{Y}$$
 - Probability that $(y = 1)$

$$\hat{Y} = P(Y=1 \mid X)$$

X - input features

$$\hat{Y} = \sigma(Z)$$

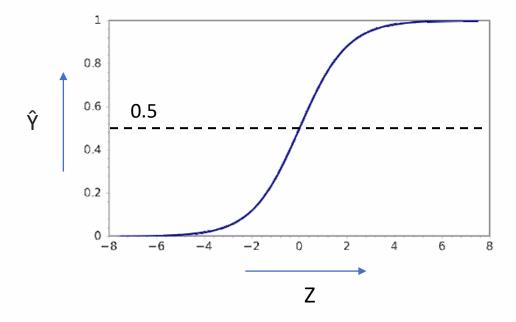
Advantages:

- 1. Easy to implement
- 2. Performs well on data with linear relationship
- 3. Less prone to over-fitting for low dimensional dataset

Disadvantages:

- 1. High dimensional dataset causes over-fitting
- 2. Difficult to capture complex relationships in a dataset
- 3. Sensitive to Outliers
- 4. Needs a larger dataset

Math behind Logistic Regression



$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}}$$

$$Z = w.X + b$$

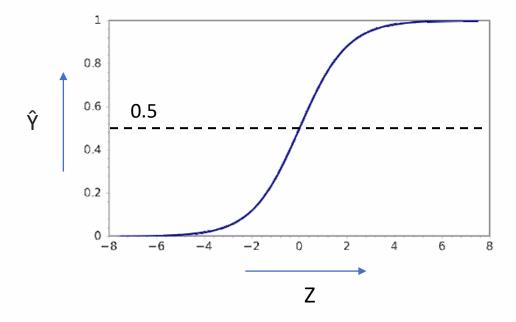
Sigmoid Function

$$\hat{Y}$$
 - Probability that $(y = 1)$

$$\hat{Y} = P(Y=1 \mid X)$$

X - input features

$$\hat{Y} = \sigma(Z)$$



$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}}$$

$$Z = 5X + 10$$

Sigmoid Function

$$\hat{Y}$$
 - Probability that $(y = 1)$

$$\hat{Y} = P(Y=1 \mid X)$$

X - input features

$$\hat{Y} = \sigma(Z)$$

X	-9	-8	0	8	9
Ŷ					

$$Z = 5X + 10$$

$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}}$$

$$X = -9$$

$$Z = 5(-9) + 10$$

$$Z = -35$$

$$\hat{Y} = \frac{1}{1 + e^{35}}$$

$$\hat{Y} = 0$$

$$X = -8$$

$$Z = 5(-8) + 10$$

$$Z = -30$$

$$\hat{Y} = \frac{1}{1 + e^{30}}$$

$$\hat{Y} = 0$$

$$X = 0$$

$$Z = 5(0) + 10$$

$$\hat{Y} = \frac{1}{1 + e^{-10}}$$

$$\hat{Y} = 1$$

$$X = 8$$

$$Z = 5(8) + 10$$

$$Z = 50$$

$$\hat{Y} = \frac{1}{1 + e^{-50}}$$

$$\hat{Y} = 3$$

$$X = 9$$

$$Z = 5(9) + 10$$

$$Z = 55$$

$$\hat{Y} = \frac{1}{1 + e^{-55}}$$

$$\hat{Y} = 1$$

X	-9	-8	0	8	9
Ŷ	0	0	1	1	1

$$Z = 5X + 10$$

$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}}$$

$$X = -9$$

$$Z = 5(-9) + 10$$

$$Z = -35$$

$$\hat{Y} = \frac{1}{1 + e^{35}}$$

$$\hat{Y} = 0$$

$$X = -8$$

$$Z = 5(-8) + 10$$

$$Z = -30$$

$$\hat{Y} = \frac{1}{1 + e^{30}}$$

$$\hat{Y} = 0$$

$$X = 0$$

$$Z = 5(0) + 10$$

$$\hat{Y} = \frac{1}{1 + e^{-10}}$$

$$\hat{Y} = 1$$

$$X = 8$$

$$Z = 5(8) + 10$$

$$Z = 50$$

$$\hat{Y} = \frac{1}{1 + e^{-50}}$$

$$\hat{Y} = 1$$

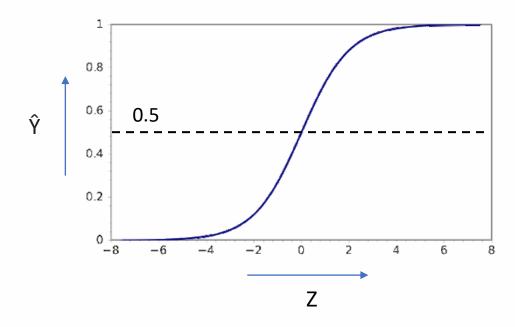
$$X = 9$$

$$Z = 5(9) + 10$$

$$Z = 55$$

$$\hat{Y} = \frac{1}{1 + e^{-55}}$$

$$\hat{Y} = 1$$



$$\hat{Y} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

Inference:

If Z value is a large positive number,

$$\hat{\gamma} = \frac{1}{1+0}$$

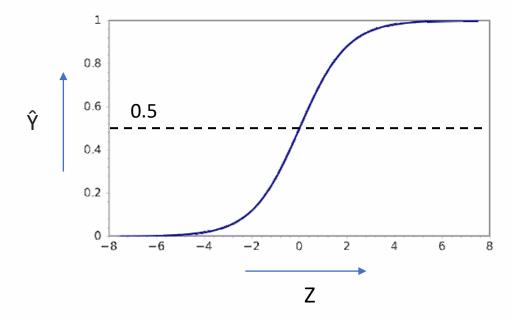
$$\hat{Y} = 1$$

If Z value is a large negative number,

$$\hat{\gamma} = \frac{1}{1 + (large\ positive\ number)}$$

$$\hat{Y} = 0$$

Loss Function & Cost Function for Logistic Regression



$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

 \hat{Y} - Probability that (y = 1)

 $\hat{Y} = P(Y=1 \mid X)$

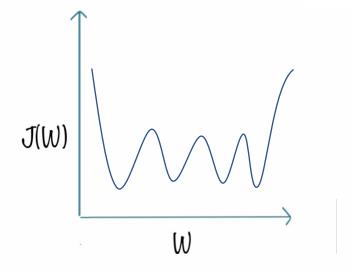
X - input features

w – weights (number of weights is equal to the number of input features in a dataset)

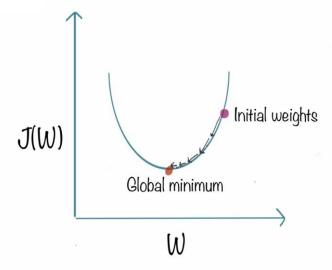
b - bias

Loss function measures how far an estimated value is from its true value.

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$



Gradient Descent With Local minima



Gradient Descent
With Global minima

Loss Function for Logistic Regression

Binary Cross Entropy Loss Function (or) Log Loss:

$$L(y, \hat{y}) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

When
$$y = 1$$
, \Rightarrow L(1, \hat{y}) = -(1 log \hat{y} + (1 - 1) log (1 - \hat{y})) \Rightarrow L(1, \hat{y}) = - log \hat{y}

We always want a smaller Loss Function value, hence, \hat{y} should be very large, so that $(-\log \hat{y})$ will be a large negative number.

When y = 0,
$$\Rightarrow$$
 L (0, \hat{y}) = - (0 log \hat{y} + (1 – 0) log (1 – \hat{y})) \Rightarrow L (0, \hat{y}) = - log (1 – \hat{y})

We always want a smaller Loss Function value, hence, \hat{y} should be very small, so that $-\log(1-\hat{y})$ will be a large negative number.

Cost Function for Logistic Regression

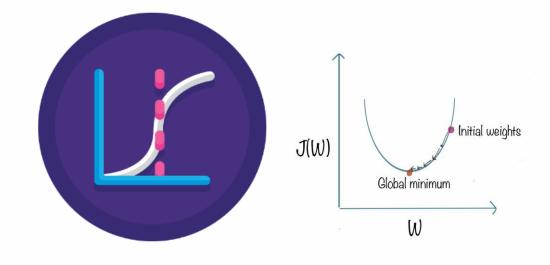
Loss function (L) mainly applies for a single training set as compared to the cost function (J) which deals with a penalty for a number of training sets or the complete batch.

$$L(y, \hat{y}) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

$$J(w, b) = \frac{1}{m} \sum_{i=1}^{m} (L(y^{(i)}, \hat{y}^{(i)})) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$

('m' denotes the number of data points in the training set)

Gradient Descent for Logistic Regression



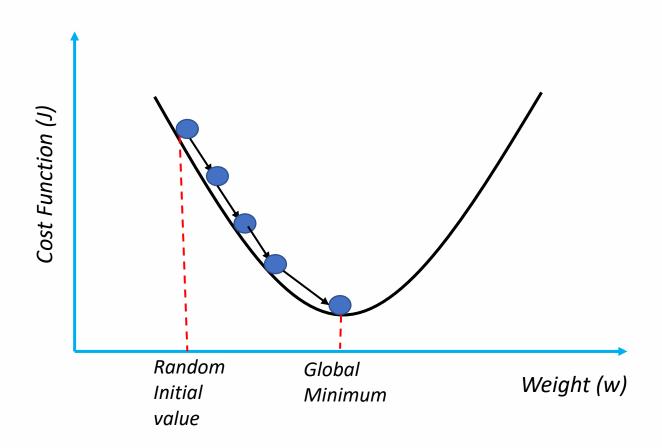
About Logistic Regression:

- 1. Supervised Learning Model
- 2. Classification model
- 3. Best for Binary Classification Problem
- 4. Uses Sigmoid function
- 5. Binary Cross Entropy Loss Function (or) Log Loss

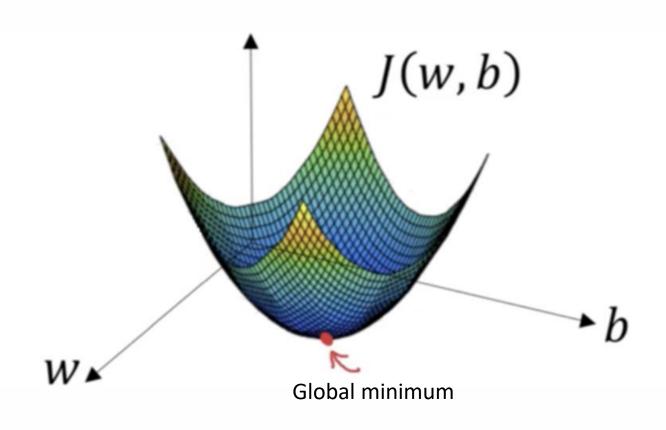
$$\hat{\mathbf{Y}} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

$$J(w, b) = \frac{1}{m} \sum (L(y^{(i)}, \hat{y}^{(i)})) = -\frac{1}{m} \sum (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$



Gradient Descent in 3 Dimension



Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L*dw$$

$$b_2 = b_1 - L*db$$

w --> weight

b --> bias

L --> Learning Rate

dw --> Partial Derivative of cost function with respect to w

db --> Partial Derivative of cost function with respect to b

$$dw = \frac{1}{m} * (\hat{Y} - Y).X$$

$$db = \frac{1}{m} * (\hat{Y} - Y)$$

Logistic Regression model:

- ❖ Sigmoid Function
- Updating weights through Gradient Descent
- Derivatives

$$\hat{Y} = \frac{1}{1 + e^{-Z}}$$

$$Z = w.X + b$$

$$w_2 = w_1 - L*dw$$

$$b_2 = b_1 - L*db$$

$$dw = \frac{1}{m} * (\hat{Y} - Y).X$$

$$db = \frac{1}{m} * (\hat{Y} - Y)$$

Building Logistic Regression model from Scratch in Python

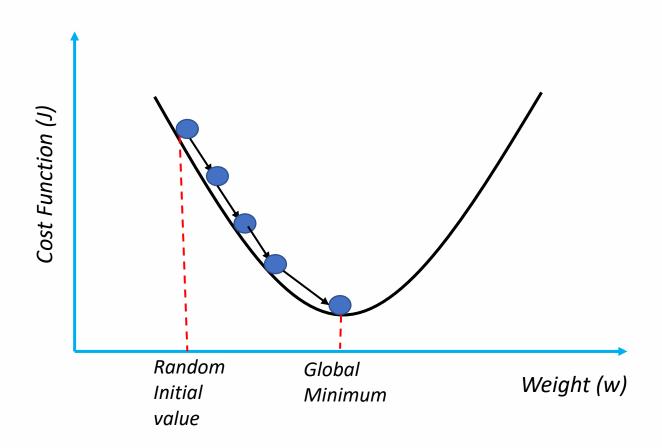
About Logistic Regression:

- 1. Supervised Learning Model
- 2. Classification model
- 3. Best for Binary Classification Problem
- 4. Uses Sigmoid function
- 5. Binary Cross Entropy Loss Function (or) Log Loss

$$\hat{\mathbf{Y}} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

$$J(w, b) = \frac{1}{m} \sum (L(y^{(i)}, \hat{y}^{(i)})) = -\frac{1}{m} \sum (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L*dw$$

$$b_2 = b_1 - L*db$$

w --> weight

b --> bias

L --> Learning Rate

dw --> Partial Derivative of cost function with respect to w

db --> Partial Derivative of cost function with respect to b

$$dw = \frac{1}{m} * (\hat{Y} - Y).X$$

$$db = \frac{1}{m} * (\hat{Y} - Y)$$

Logistic Regression

Logistic Regression model:

- ❖ Sigmoid Function
- Updating weights through Gradient Descent
- Derivatives

$$\hat{Y} = \frac{1}{1 + e^{-Z}}$$

$$Z = w.X + b$$

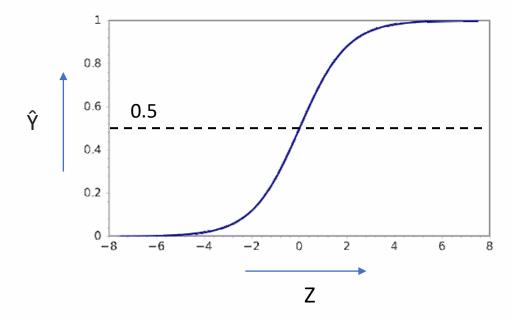
$$w_2 = w_1 - L*dw$$

$$b_2 = b_1 - L*db$$

$$dw = \frac{1}{m} * (\hat{Y} - Y).X$$

$$db = \frac{1}{m} * (\hat{Y} - Y)$$

Logistic Regression



$$\hat{\mathbf{y}} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Sigmoid Function

 \hat{Y} - Probability that (y = 1)

 $\hat{Y} = P(Y=1 \mid X)$

X - input features

w – weights (number of weights is equal to the number of input features in a dataset)

b - bias

Multiplying 2 Matrices

Rule: The number of columns in the First matrix should be equal to the number of rows in the Second Matrix

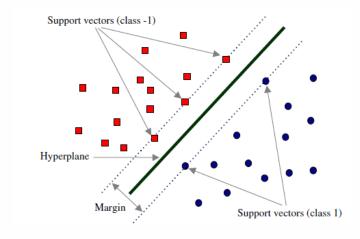
The resultant matrix will have the same number of rows as the first matrix & the same number of columns as the Second Matrix

Can be multiplied. Resultant matrix will have the shape 2 x 2

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{bmatrix}$$
 X $\begin{bmatrix} 5 & 2 \\ 3 & 6 \\ 2 & 5 \end{bmatrix}$ 3 x 2

Cannot be multiplied.

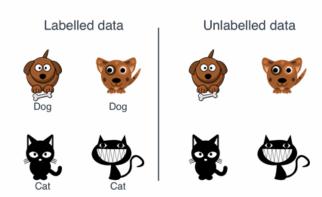
Support Vector Machine (SVM) Classifier - intuition

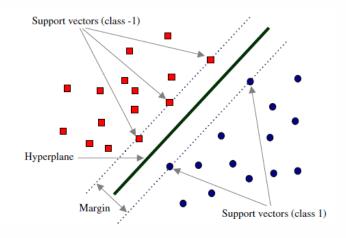


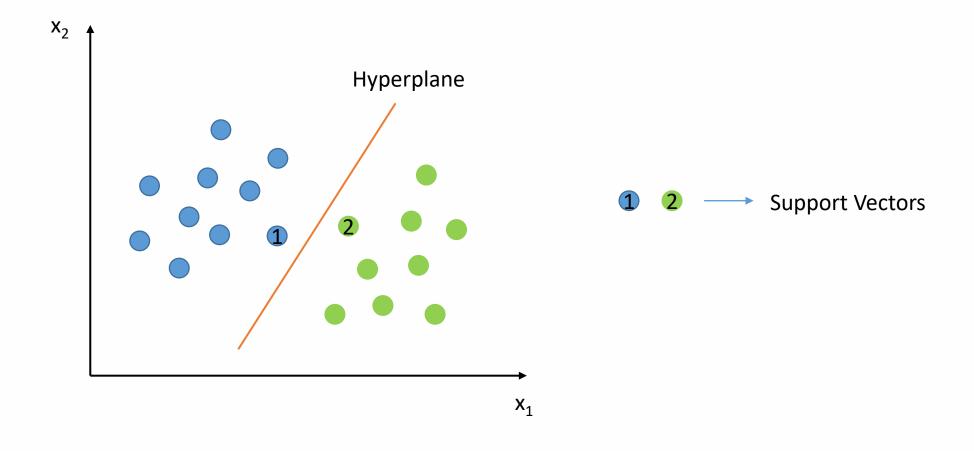
Support Vector Machine

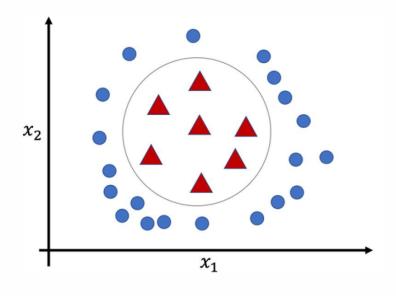
About Support Vector Machine model:

- 1. Supervised Learning Model
- 2. Both Classification & Regression
- 3. Hyperplane
- 4. Support Vectors

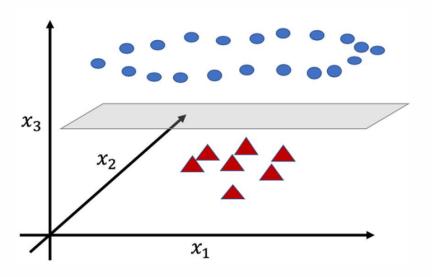








SVM in 2 dimensions



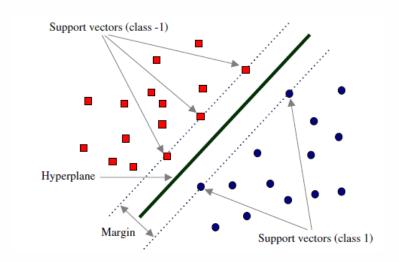
SVM in 3 dimensions

Hyperplane:

Hyperplane is a line (in 2d space) or a plane that separate the data points into 2 classes.

Support Vectors:

Support Vectors are the data points which lie nearest to the hyperplane. If theses data points changes, the position of the hyperplane changes.

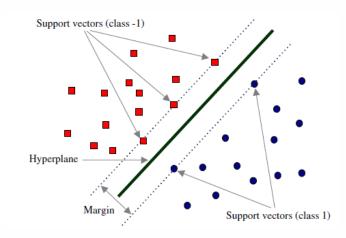


Advantages:

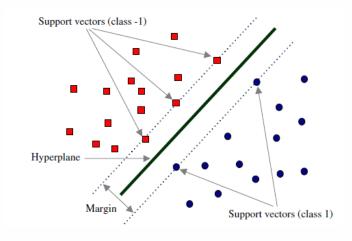
- 1. Works well with smaller datasets
- 2. Works efficiently when there is a clear margin of separation
- 3. Works well with high dimensional data

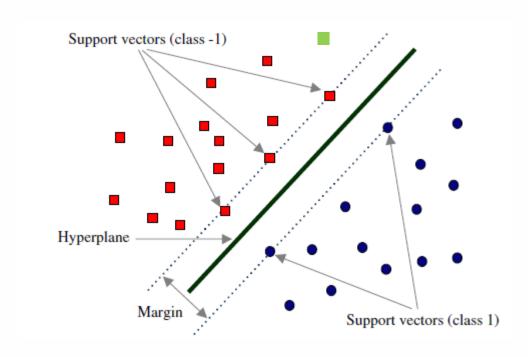
Disadvantages:

- 1. Not suitable for large datasets as the training time is higher
- 2. Not suitable for noisier datasets with overlapping classes

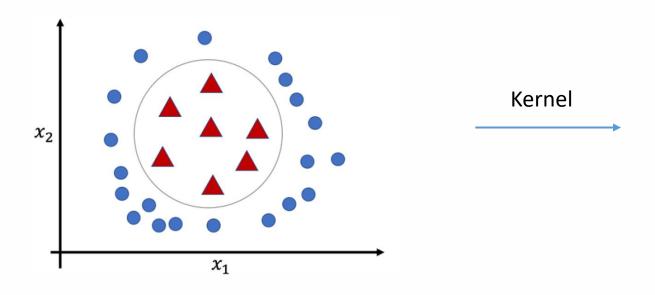


Math behind Support Vector Machine (SVM) Classifier

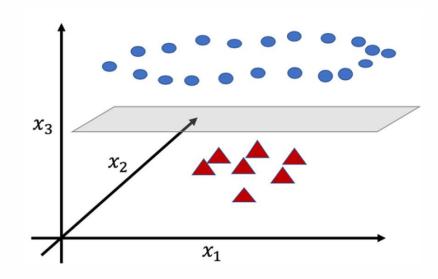




- > Hyperplane
- > Support Vectors
- Margin
- Linearly separable data



SVM in 2 dimensions



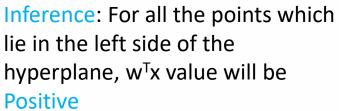
SVM in 3 dimensions

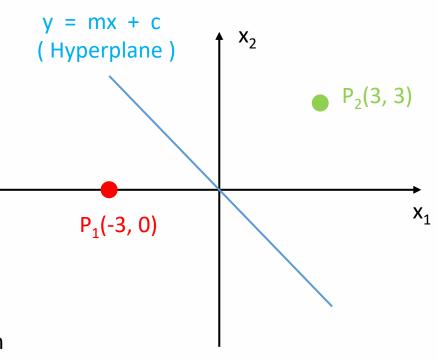
 \bullet P₁(-3, 0)

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -3 & 0 \end{bmatrix}$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = 3$$

(Positive)





Let slope, m = -1

Intercept, c = 0

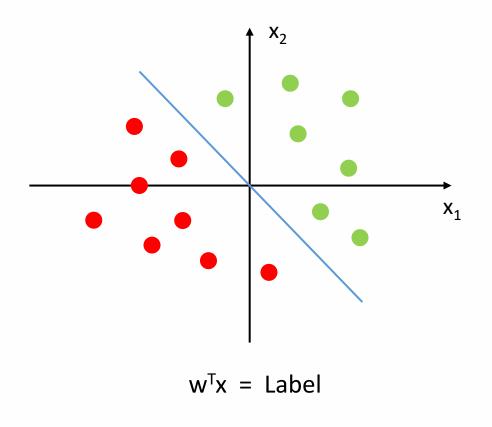
w --> parameters of the line
$$(m, c) = (-1, 0)$$

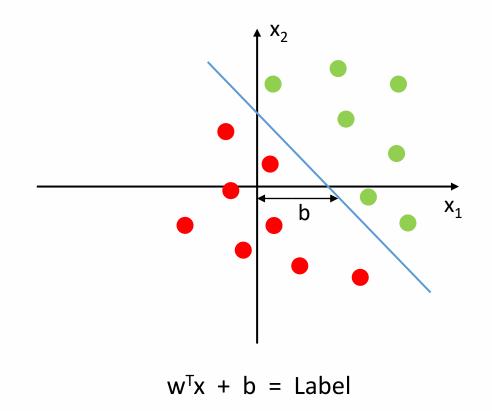
$$P_{2}(3,3)$$

$$W^{T}x = \begin{bmatrix} -1 \\ 0 \end{bmatrix} [3 \quad 3]$$

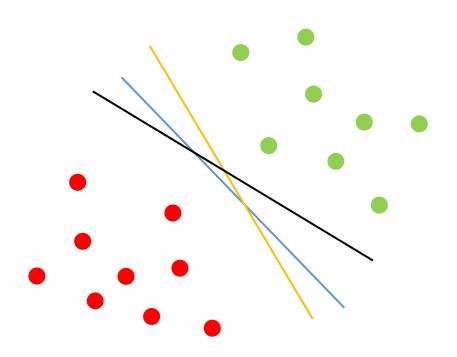
$$W^{T}x = -3$$
(Negative)

Inference: For all the points which lie in the right side of the hyperplane, w^Tx value will be Negative

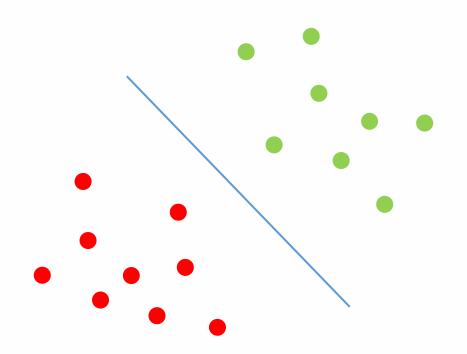


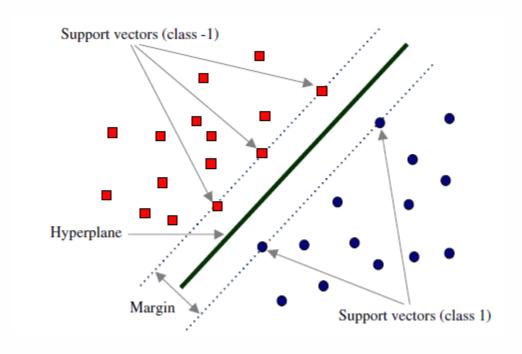


Which is the best Hyperplane?

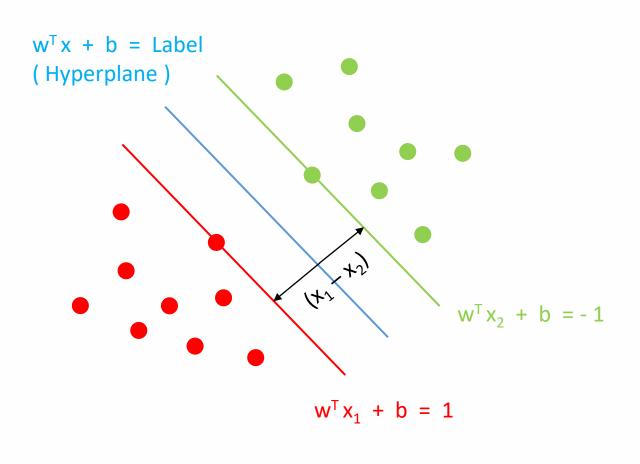


Which is the best Hyperplane?





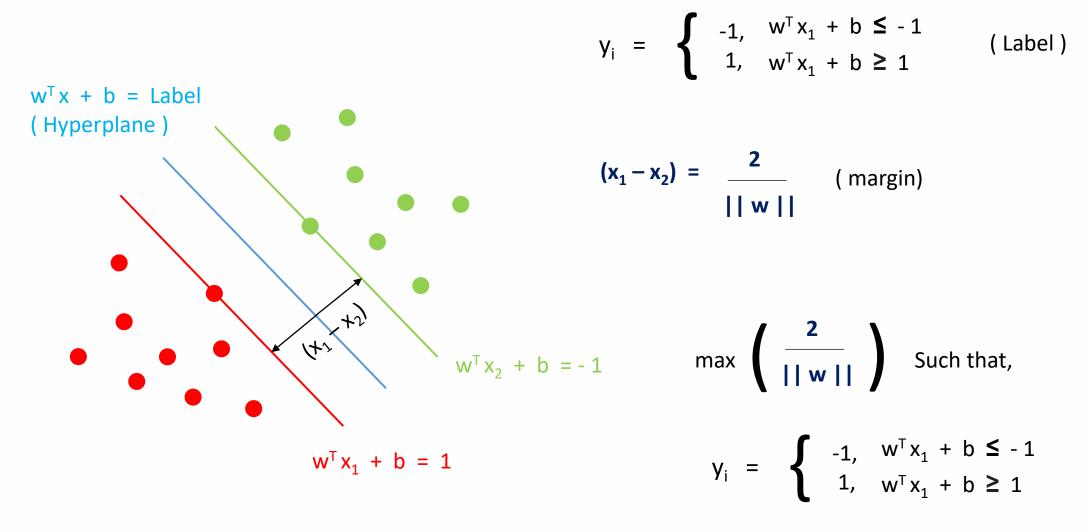
Optimization for Maximum margin:



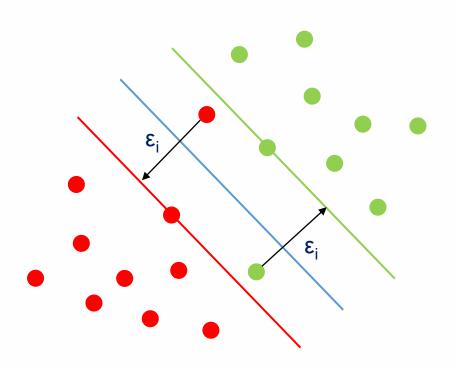
$$w^{T}x_{1} + b = 1$$
 $(-) w^{T}x_{2} + b = -1$
 $w^{T}(x_{1} - x_{2}) = 2$
 $w^{T}(x_{1} - x_{2}) = \frac{2}{||w||}$
 $w^{T}(x_{1} - x_{2}) = \frac{2}{||w||}$

$$(x_1 - x_2) = \frac{2}{\| w \|}$$
 (margin)

Optimization for Maximum margin:



Maximum margin without overfitting:



$$\max \left(\begin{array}{c} \frac{2}{||w||} \end{array} \right) \quad \text{Such that,}$$

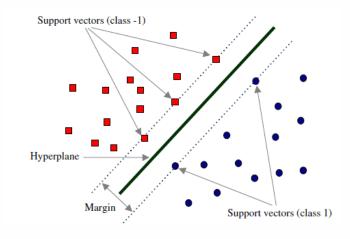
$$y_i = \begin{cases} -1, & w^T x_1 + b \le -1 \\ 1, & w^T x_1 + b \ge 1 \end{cases}$$

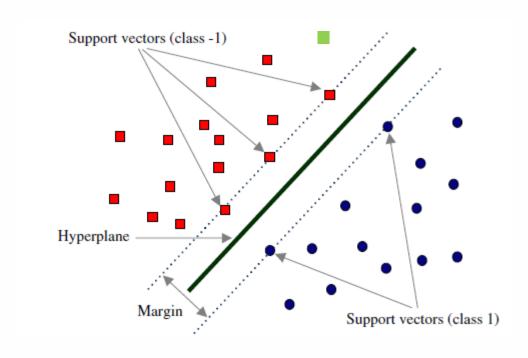
$$\min \left(\frac{||w||}{2} \right) + c * \sum \epsilon_i$$

c --> Number of errors

 ε_i --> Error magnitude

Support Vector Machine (SVM) - Kernels



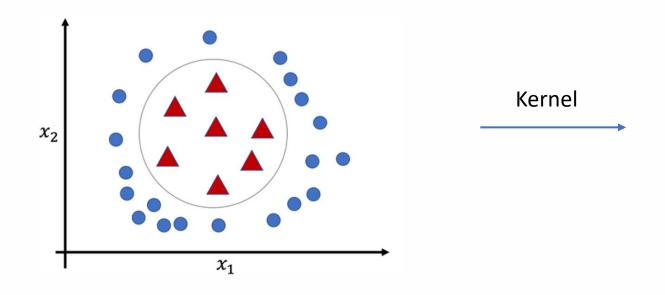


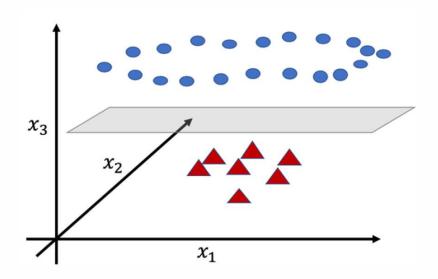
- > Hyperplane
- Support Vectors
- Margin
- Linearly separable data

SVM Kernel

SVM Kernel:

Kernel Function generally transforms the training set of data so that a non-linear decision surface can be transformed to a linear equation in a higher number of dimension spaces. It returns the inner product between two points in a standard feature dimension.





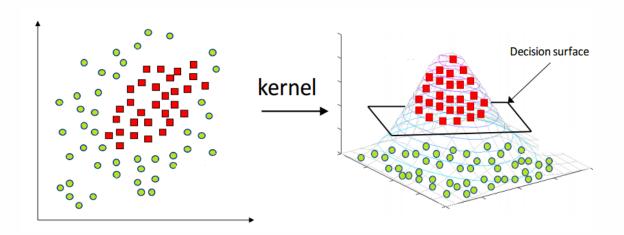
SVM in 2 dimensions

SVM in 3 dimensions

SVM Kernels

Types of SVM Kernels:

- 1. Linear
- 2. Polynomial
- 3. Radial Basis Function (rbf)
- 4. Sigmoid



SVM Kernels

Feature (x)	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
, ,													

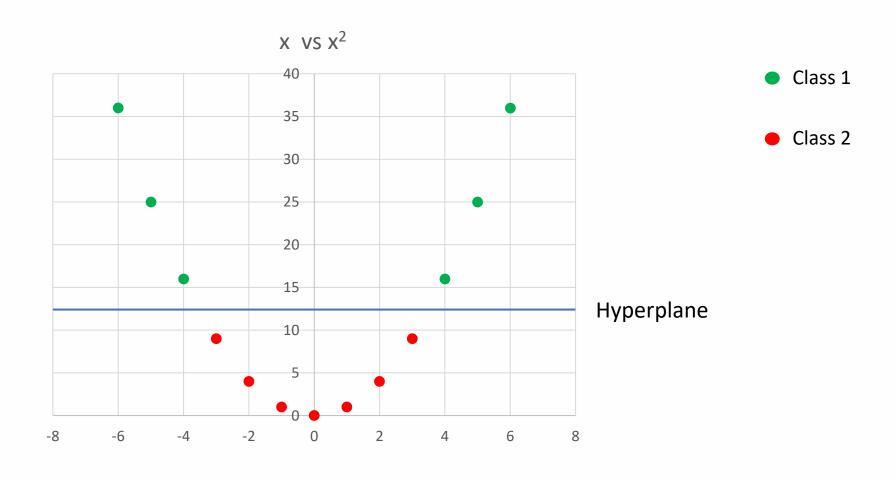
Class 1

Class 2

Feature (x)

SVM Kernels

Feature (x)	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
x ²	36	25	16	9	4	1	0	1	4	9	16	25	36



Types of SVM Kernels

1. Linear Kernel:

$$K(x_1, x_2) = x_1^T x_2$$

3. Radial Basis Function (rbf) Kernel:

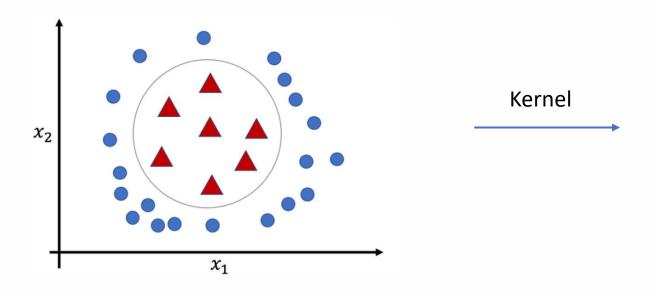
$$K(x_1, x_2) = \exp(-\gamma \cdot ||x_1 - x_2||^2)$$

2. Polynomial Kernel:

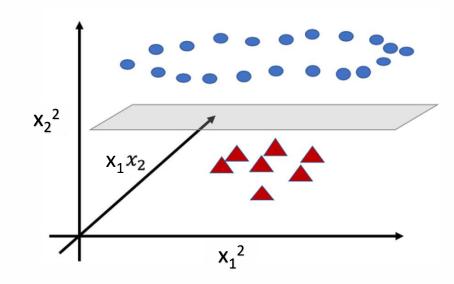
$$K(x_1, x_2) = (x_1^T x_2 + r)^d$$

4. Sigmoid Kernel:

$$K(x_1, x_2) = tanh(\gamma . x_1^T x_2 + r)$$

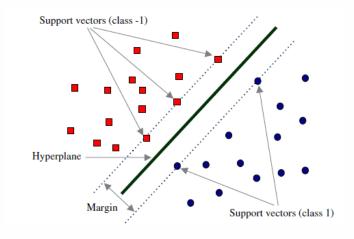


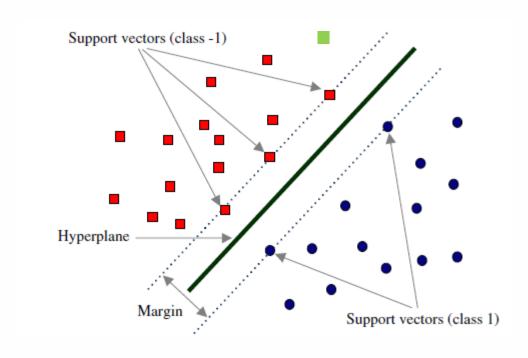
SVM in 2 dimensions



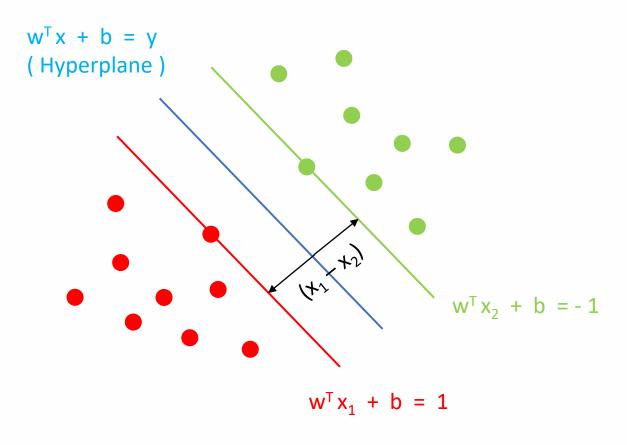
SVM in 3 dimensions

Loss Function for Support Vector Machine Classifier



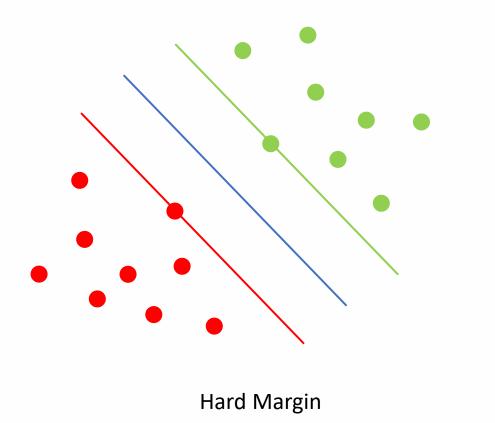


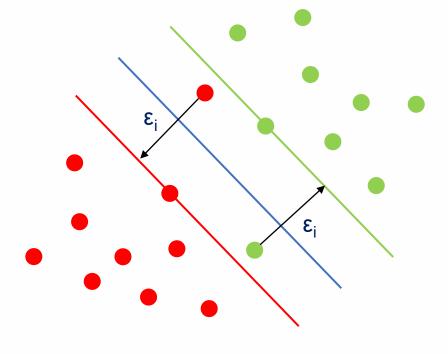
- > Hyperplane
- Support Vectors
- Margin
- Linearly separable data



$$\max \left(\begin{array}{c} \frac{2}{||w||} \end{array} \right) \qquad \text{(margin)}$$

$$\hat{y}_i = \begin{cases} -1, & w^T x_1 + b \le -1 \\ 1, & w^T x_1 + b \ge 1 \end{cases}$$

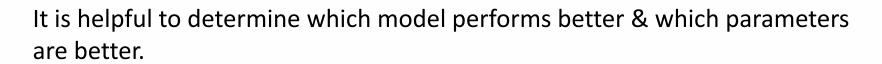




Soft Margin

Loss Function

Loss function measures how far an estimated value is from its true value.



Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

For Support Vector Machine Classifier "Hinge Loss" is used as the Loss Function.

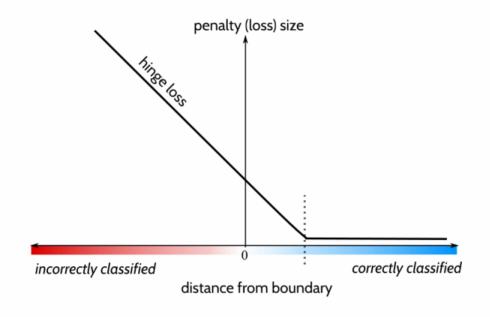
Hinge Loss

Hinge Loss is one of the types of Loss Function, mainly used for maximum margin classification models.

Hinge Loss incorporates a margin or distance from the classification boundary into the loss calculation. Even if new observations are classified correctly, they can incur a penalty if the margin from the decision boundary is not large enough.

$$L = max (0, 1 - y_i (w^T x_i + b))$$

- 0 for correct classification
- 1 for wrong classification



Hinge Loss

Misclassification:

$$y_i = 1 \hat{y}_i = -1$$

$$L = (1 - (1)(-1))$$

$$L = (1 + 1)$$

Correct classification:

$$y_i = 1 \hat{y}_i = 1$$

$$L = (0 - (1)(1)$$

$$L = (0-1)$$

$$L = -1$$
 (Low loss Value)

$$y_i = -1 \quad \hat{y}_i = 1$$

$$L = (1 - (-1)(1)$$

$$L = (1+1)$$

$$y_i = -1 \quad \hat{y}_i = -1$$

$$L = (0 - (-1)(-1))$$

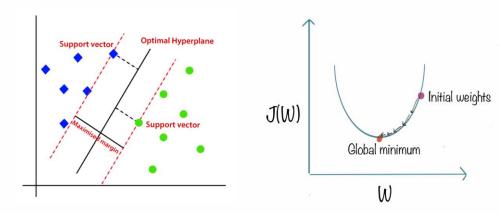
$$L = (0-1)$$

$$L = max (0, 1 - y_i (w^T x_i + b))$$

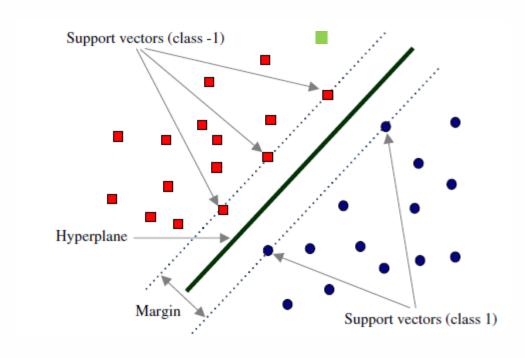
0 - for correct classification

1 - for wrong classification

Gradient Descent for Support Vector Machine Classifier

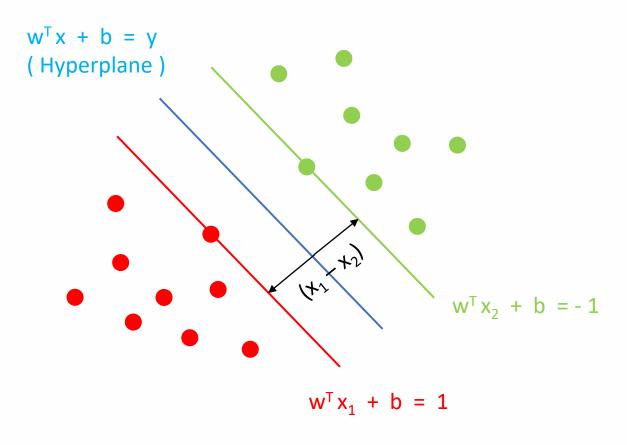


Support Vector Machine Classifier



- > Hyperplane
- > Support Vectors
- > Margin

Support Vector Machine Classifier



$$\max \left(\begin{array}{c} \frac{2}{||w||} \end{array} \right) \qquad \text{(margin)}$$

$$\hat{y}_i = \begin{cases} -1, & w^T x_1 + b \leq -1 \\ 1, & w^T x_1 + b \geq 1 \end{cases}$$

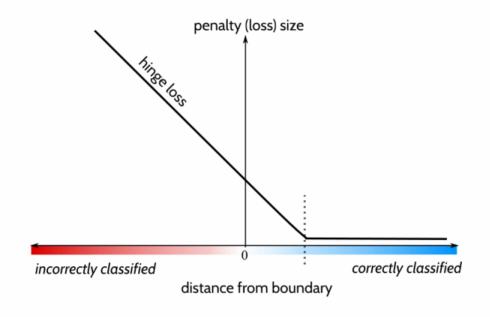
Hinge Loss

Hinge Loss is one of the types of Loss Function, mainly used for maximum margin classification models.

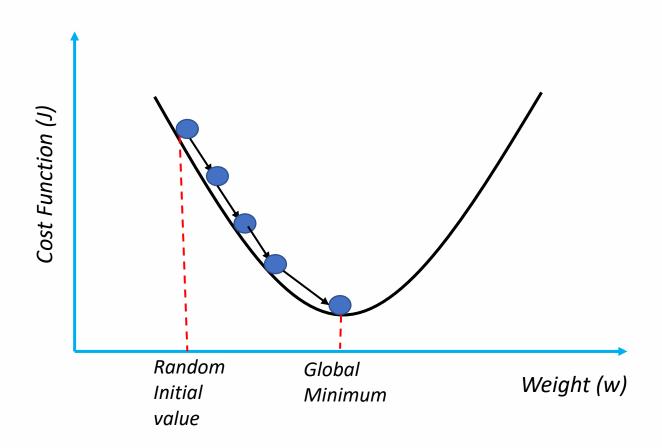
Hinge Loss incorporates a margin or distance from the classification boundary into the loss calculation. Even if new observations are classified correctly, they can incur a penalty if the margin from the decision boundary is not large enough.

$$L = max (0, 1 - y_i (w^T x_i + b))$$

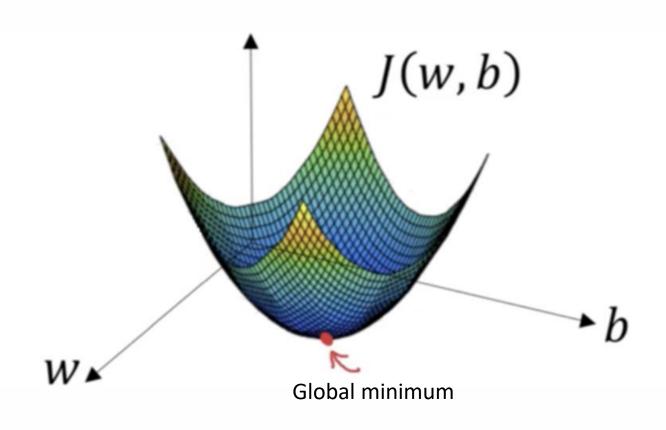
- 0 for correct classification
- 1 for wrong classification



Gradient Descent



Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

w --> weight

b --> bias

L --> Learning Rate

 $\frac{dJ}{dw}$ --> Partial Derivative of cost function with respect to w

 $\frac{aJ}{dh}$ --> Partial Derivative of cost function with respect to b

Gradients for SVM Classifier

if
$$(y_i, (w.x + b) \ge 1)$$
:

$$\frac{dJ}{dw} = 2\lambda w$$

$$\frac{dJ}{db} = 0$$

else
$$(y_i.(w.x+b) < 1)$$
:

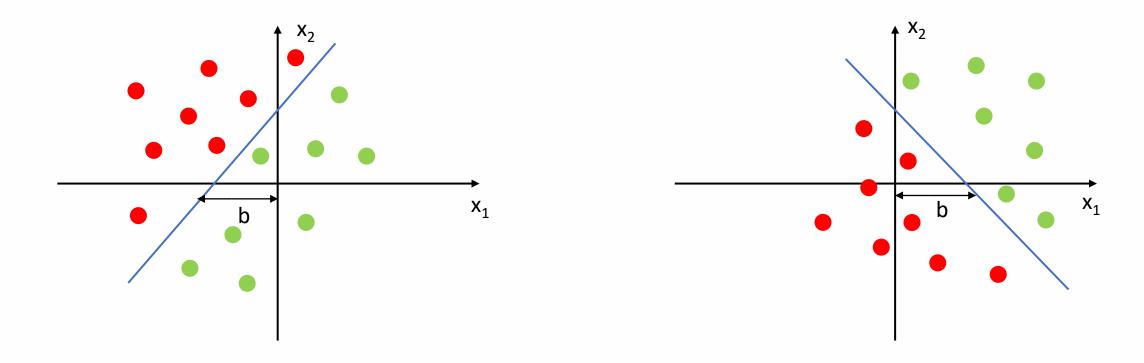
$$\frac{dJ}{dw} = 2\lambda w - y_i \cdot x_i$$

$$\frac{dJ}{db} = yi$$

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

Support Vector Machine Classifier



Gradients for SVM Classifier

if
$$(y_i, (w.x_i - b) \ge 1)$$
:

$$\frac{dJ}{dw} = 2\lambda w$$

$$\frac{dJ}{db} = 0$$

else
$$(y_i.(w.x_i-b) < 1)$$
:

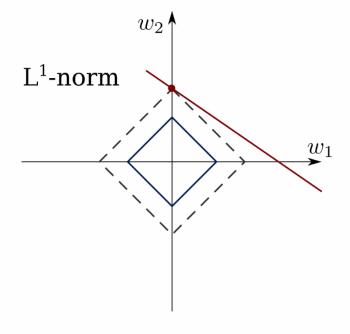
$$\frac{dJ}{dw} = 2\lambda w - y_i \cdot x_i$$

$$\frac{dJ}{db} = yi$$

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

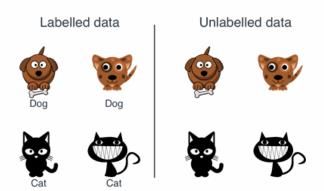
Lasso Regression - intuition

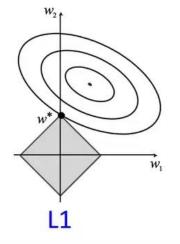


Lasso Regression

About Lasso Regression:

- 1. Supervised Learning Model
- 2. Regression model
- 3. Least Absolute Shrinkage and Selection Operator
- 4. Implements Regularization (L1) to avoid Overfitting





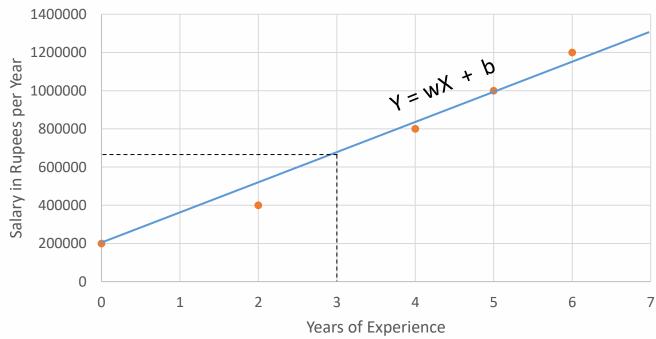
Linear Regression

Experience in Years	0	2	4	5	6
Salary	2,00,000	4,00,000	8,00,000	10,00,000	12,00,000

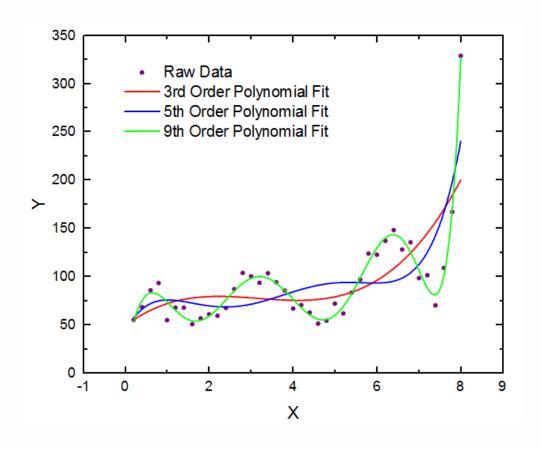
What would be the **salary** of a person with **3 years of Experience?**

~ ₹ 650000 per Year

Years of Experience vs. Salary



Polynomial Equations



 1^{st} order Polynomial equation : y = ax + d

 2^{nd} order Polynomial equation : $y = ax^2 + bx + d$

 3^{rd} order Polynomial equation : $y = ax^3 + bx^2 + cx + d$

y --> Dependent Variable

x --> Independent Variable

a, b, c --> coefficients

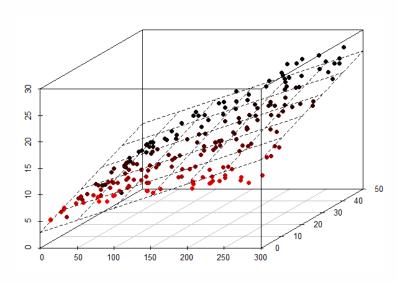
d --> constant term

Inference: As the complexity of the model increases, It tends to Overfit with the data.

What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one dependent variable based on two or more independent variables.



$$Y = w_1 X_1 + b$$

$$Y = W_1 X_1 + W_2 X_2 + W_3 X_3 + b$$

Regularization

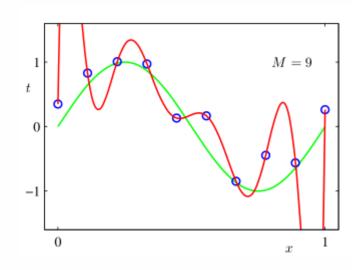
Regularization is used to reduce the overfitting of the model by adding a penalty term (λ) to the model. Lasso Regression uses L1 regularization technique.

The "penalty" term reduces the value of the coefficients or eliminate few coefficients, so that the model has fewer coefficients. As a result, overfitting can be avoided.

 3^{rd} order Polynomial equation : $y = ax^3 + bx^2 + cx + d$

This Process is called as Shrinkage.

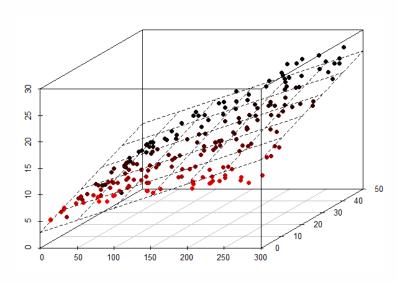
LASSO --> Least Absolute Shrinkage and Selection Operator



What if there are more than 2 Variables?

Multiple Linear Regression

Multiple linear regression is a model for predicting the value of one dependent variable based on two or more independent variables.

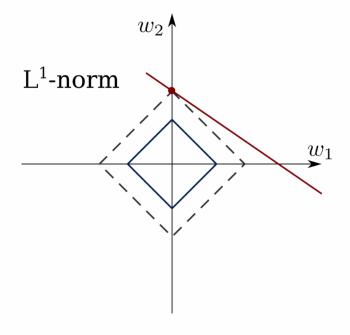


$$Y = w_1 X_1 + b$$

$$Y = w_1 X_1 + w_2 X_2 + w_3 X_3 + b$$

Feature Selection

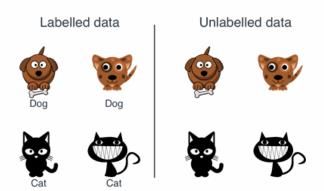
Math behind Lasso Regression

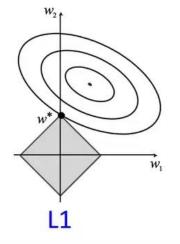


Lasso Regression

About Lasso Regression:

- 1. Supervised Learning Model
- 2. Regression model
- 3. Least Absolute Shrinkage and Selection Operator
- 4. Implements Regularization (L1) to avoid Overfitting





Regularization

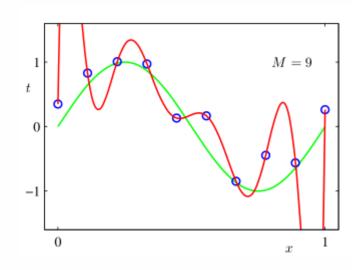
Regularization is used to reduce the overfitting of the model by adding a penalty term (λ) to the model. Lasso Regression uses L1 regularization technique.

The "penalty" term reduces the value of the coefficients or eliminate few coefficients, so that the model has fewer coefficients. As a result, overfitting can be avoided.

 3^{rd} order Polynomial equation : $y = ax^3 + bx^2 + cx + d$

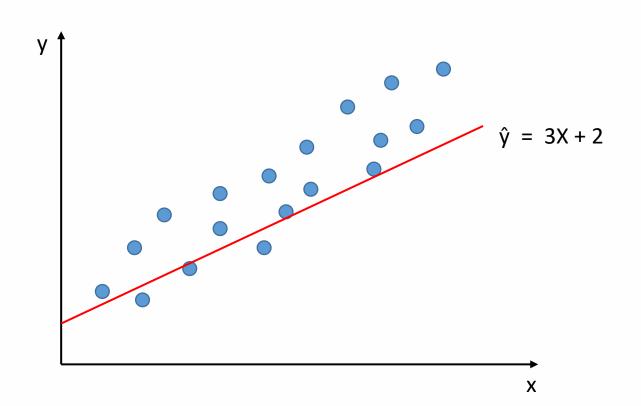
This Process is called as Shrinkage.

LASSO --> Least Absolute Shrinkage and Selection Operator



Linear Regression

Randomly assigned Parameters: w = 3; b = 2



Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

Cost Function

Х	У	ŷ
2	10	8
3	14	11
4	18	14
5	22	17
6	26	20

Cost (J) =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Cost =
$$[(10-8)^2 + (14-11)^2 + (18-14)^2 + (22-17)^2 + (26-20)^2] / 5$$

Cost =
$$[4+9+16+25+36]/5$$

$$Cost = 18$$

Lasso Regression

Cost Function for Lasso Regression :

$$J = \frac{1}{m} \left[\sum_{i=1}^{m} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j \right]$$

m --> Total number of Data Points

n --> Total number of input features

y⁽ⁱ⁾ --> True Value

 $\hat{y}^{(i)}$ --> Predicted Value

λ --> Penalty Term

w --> Parameter of the model

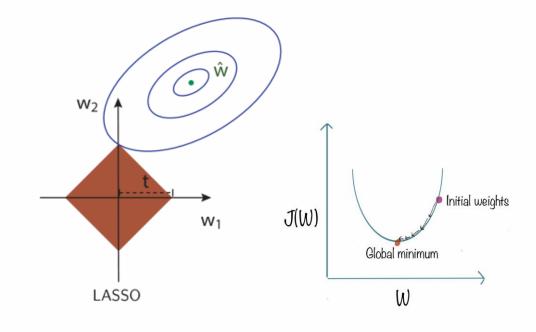
Boston House Price Dataset

The dataset used in this project comes from the UCI Machine Learning Repository. This data was collected in 1978 and each of the 506 entries represents aggregate information about 14 features of homes from various suburbs located in Boston.

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	price
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4

$$J = \frac{1}{m} \left[\sum_{i=1}^{m} \left(\mathbf{Y}^{(i)} - \hat{\mathbf{Y}}^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} w_j \right]$$

Gradient Descent for Lasso Regression



Lasso Regression

About Lasso Regression:

- Supervised Learning Model
- 2. Regression model
- 3. Least Absolute Shrinkage and Selection Operator
- 4. Implements Regularization (L1) to avoid Overfitting





Regularization

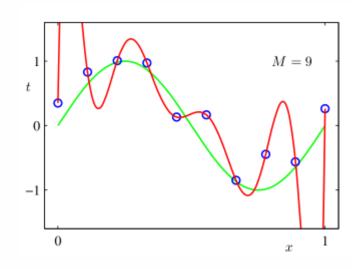
Regularization is used to reduce the overfitting of the model by adding a penalty term (λ) to the model. Lasso Regression uses L1 regularization technique.

The "penalty" term reduces the value of the coefficients or eliminate few coefficients, so that the model has fewer coefficients. As a result, overfitting can be avoided.

 3^{rd} order Polynomial equation : $y = ax^3 + bx^2 + cx + d$

This Process is called as Shrinkage.

LASSO --> Least Absolute Shrinkage and Selection Operator



Lasso Regression

Cost Function for Lasso Regression :

$$J = \frac{1}{m} \left[\sum_{i=1}^{m} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j \right]$$

m --> Total number of Data Points

n --> Total number of input features

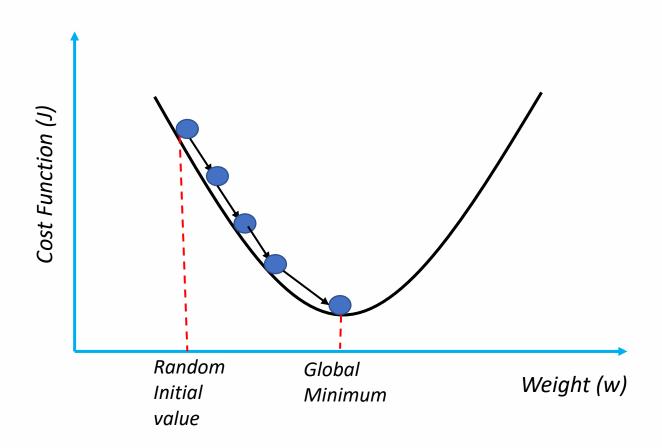
y⁽ⁱ⁾ --> True Value

 $\hat{y}^{(i)}$ --> Predicted Value

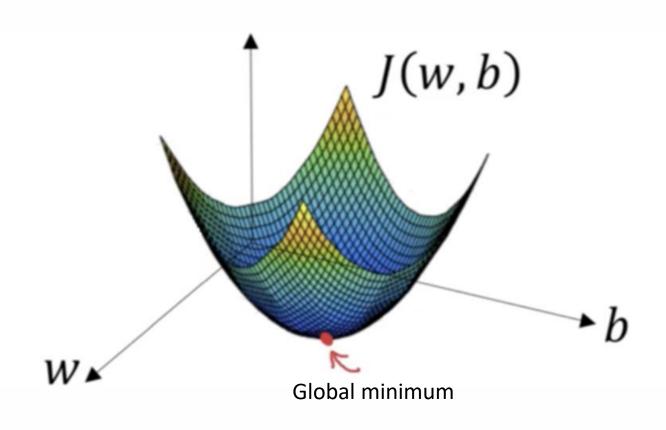
λ --> Penalty Term

w --> Parameter of the model

Gradient Descent



Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

w --> weight

b --> bias

L --> Learning Rate

 $\frac{dJ}{dw}$ --> Partial Derivative of cost function with respect to w

 $\frac{aJ}{dh}$ --> Partial Derivative of cost function with respect to b

Gradients for Lasso Regularization

if
$$(w_i > 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\sum_{i=1}^{m} x_{i} \cdot (y^{(i)} - \hat{y}^{(i)}) \right] + \lambda$$

else
$$(w_j \leq 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] + \lambda \right] \qquad \frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] - \lambda \right]$$

$$\frac{dJ}{db} = \frac{-2}{m} \left[\sum_{i=1}^{m} \left(\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right) \right]$$

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L*\frac{dJ}{db}$$

$$y = w.x + b$$

Gradients for Lasso Regularization

if
$$(w_i > 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} X_{j} \cdot (Y^{(i)} - \hat{Y}^{(i)}) \right] + \lambda \right]$$

else
$$(w_j \leq 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} X_{j} \cdot (Y^{(i)} - \hat{Y}^{(i)}) \right] + \lambda \right] \qquad \frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} X_{j} \cdot (Y^{(i)} - \hat{Y}^{(i)}) \right] - \lambda \right]$$

$$\frac{dJ}{db} = \frac{-2}{m} \left[\sum_{i=1}^{m} \left(\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right) \right]$$

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

if $(w_i > 0)$:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] + \lambda \right]$$

else $(w_j \leq 0)$:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] - \lambda \right]$$

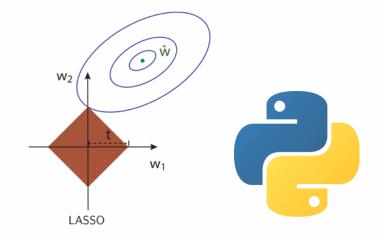
$$\frac{dJ}{db} = \frac{-2}{m} \left[\sum_{i=1}^{m} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right]$$

if
$$(w_j > 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] + \lambda \right] \quad \frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathbf{x}_{j} \cdot (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)}) \right] - \lambda \right]$$

else $(w_i \le 0)$:

Building Lasso Regression from Scratch in Python



Lasso Regression

About Lasso Regression:

- Supervised Learning Model
- 2. Regression model
- 3. Least Absolute Shrinkage and Selection Operator
- 4. Implements Regularization (L1) to avoid Overfitting





Regularization

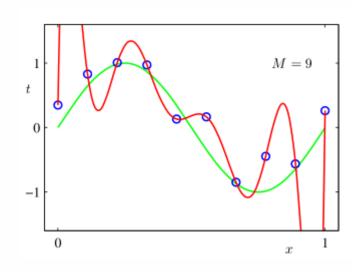
Regularization is used to reduce the overfitting of the model by adding a penalty term (λ) to the model. Lasso Regression uses L1 regularization technique.

The "penalty" term reduces the value of the coefficients or eliminate few coefficients, so that the model has fewer coefficients. As a result, overfitting can be avoided.

 3^{rd} order Polynomial equation : $y = ax^3 + bx^2 + cx + d$

This Process is called as Shrinkage.

LASSO --> Least Absolute Shrinkage and Selection Operator



Lasso Regression

Cost Function for Lasso Regression :

$$J = \frac{1}{m} \left[\sum_{i=1}^{m} (\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j \right]$$

m --> Total number of Data Points

n --> Total number of input features

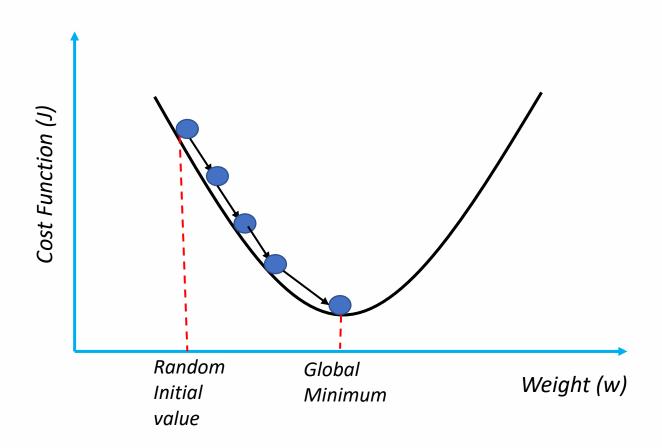
y⁽ⁱ⁾ --> True Value

 $\hat{y}^{(i)}$ --> Predicted Value

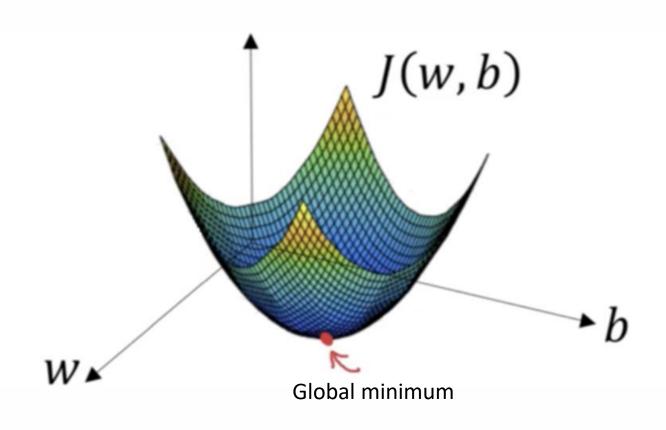
λ --> Penalty Term

w --> Parameter of the model

Gradient Descent



Gradient Descent in 3 Dimension



Gradient Descent

Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is used for updating the parameters of the learning model.

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

$$b_2 = b_1 - L^* \frac{dJ}{db}$$

w --> weight

b --> bias

L --> Learning Rate

 $\frac{dJ}{dw}$ --> Partial Derivative of cost function with respect to w

 $\frac{aJ}{dh}$ --> Partial Derivative of cost function with respect to b

Gradients for Lasso Regularization

if
$$(w_i > 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\sum_{i=1}^{m} x_{i} \cdot (y^{(i)} - \hat{y}^{(i)}) \right] + \lambda$$

else
$$(w_j \leq 0)$$
:

$$\frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathsf{x}_{\mathsf{j}} \cdot \left(\mathsf{y}^{(\mathsf{i})} - \hat{\mathsf{y}}^{(\mathsf{i})} \right) \right] + \lambda \right] \qquad \frac{dJ}{dw} = \frac{-2}{m} \left[\left[\sum_{i=1}^{m} \mathsf{x}_{\mathsf{j}} \cdot \left(\mathsf{y}^{(\mathsf{i})} - \hat{\mathsf{y}}^{(\mathsf{i})} \right) \right] - \lambda \right]$$

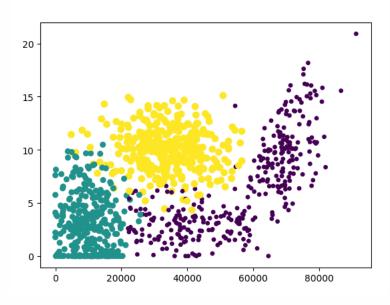
$$\frac{dJ}{db} = \frac{-2}{m} \left[\sum_{i=1}^{m} \left(\mathbf{y}^{(i)} - \hat{\mathbf{y}}^{(i)} \right) \right]$$

$$w_2 = w_1 - L^* \frac{dJ}{dw}$$

$$b_2 = b_1 - L*\frac{dJ}{db}$$

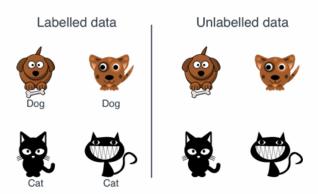
$$y = w.x + b$$

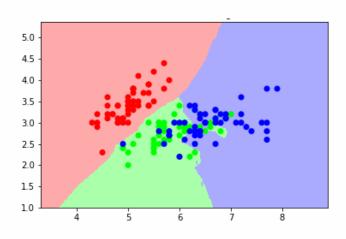
K-Nearest Neighbors (KNN) - intuition



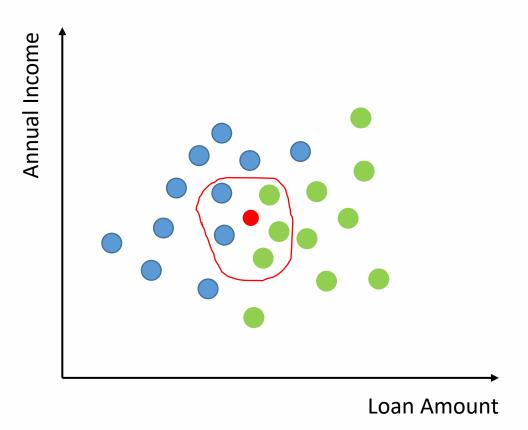
About K-Nearest Neighbors:

- 1. Supervised Learning Model
- 2. Used for both Classification & Regression
- 3. Can be used for non-linear data
- 4. K Neighbors





Classification Problem:



K = 5

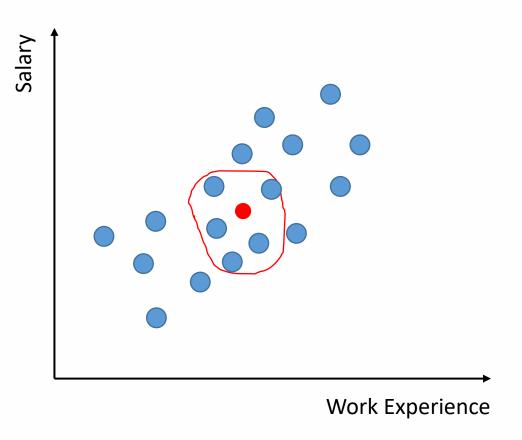
- Didn't repay on time
- May not repay the loan on time

Repaid on time

To Measure the distance between the data points:

- Euclidean Distance
- Manhattan Distance

Regression Problem:



K = 5

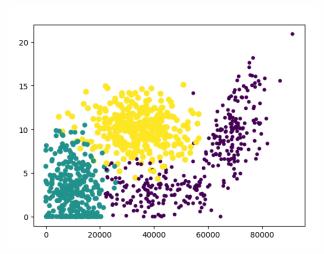
Salary of the person can be calculated as the mean of 5 nearest neighbors.

Advantages:

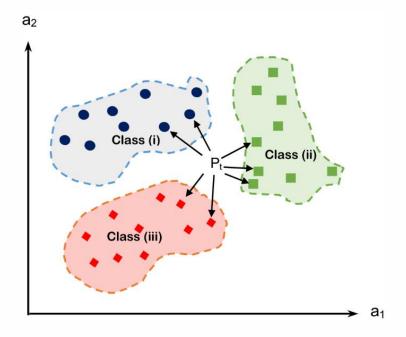
- 1. Works well with smaller datasets with less number of features
- 2. Can be used for both Classification & Regression
- 3. Easy to implement for Multi-class classification problems
- 4. Different distance criteria can be used (eg: Euclidean Distance, Manhattan Distance)

Disadvantages:

- 1. Choosing optimum "K" value
- 2. Less efficient with high dimensional data.
- 3. Doesn't perform well on imbalanced dataset
- 4. Sensitive to Outliers

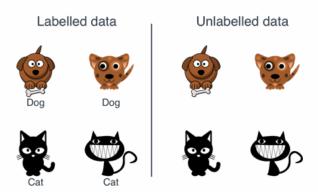


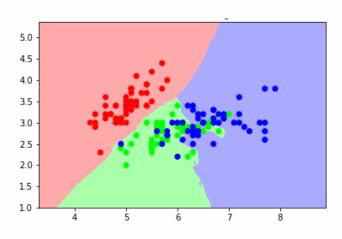
Math behind K-Nearest Neighbors (KNN) Classifier



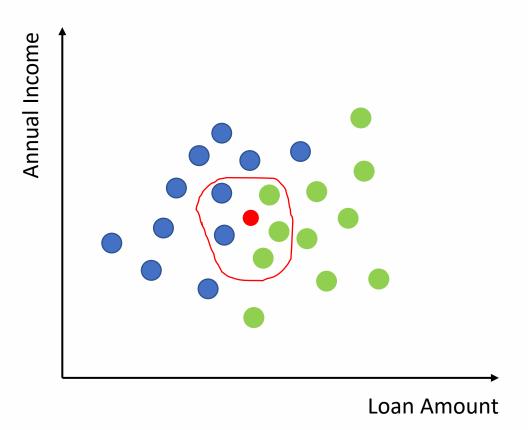
About K-Nearest Neighbors:

- 1. Supervised Learning Model
- 2. Used for both Classification & Regression
- 3. Can be used for non-linear data
- 4. K Neighbors





Classification Problem:



K = 5

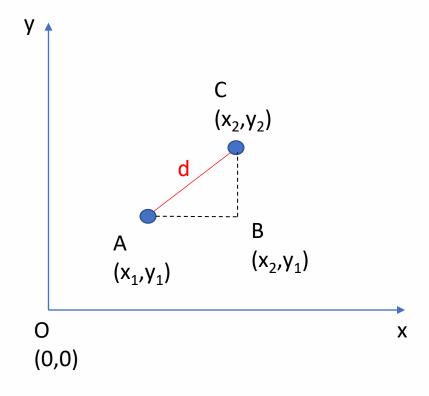
- Didn't repay on time
- May not repay the loan on time

Repaid on time

To Measure the distance between the data points:

- Euclidean Distance
- Manhattan Distance

Euclidean Distance



Pythagoras Theorem:

$$AC^2 = AB^2 + BC^2$$

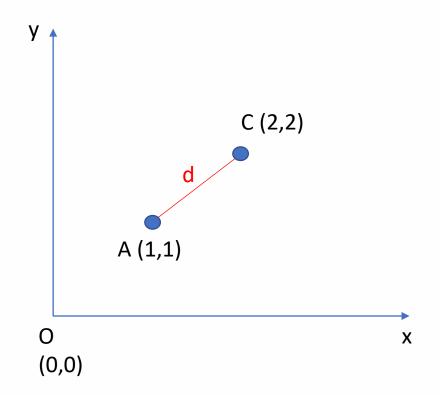
$$AC = \sqrt{AB^2 + BC^2}$$

$$AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

This distance "d" is called the Euclidean Distance.

Euclidean Distance



Euclidean Distance formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$(x_1, y_1) = A (1, 1)$$

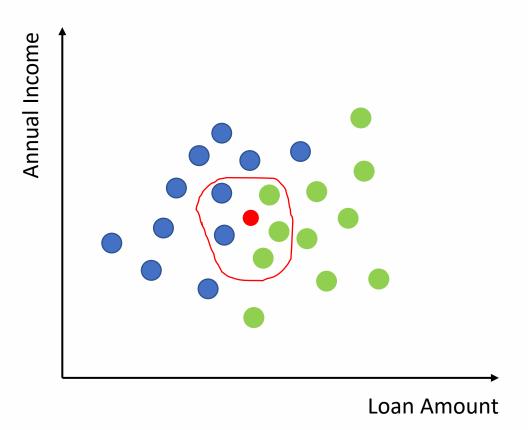
$$(x_2, y_2) = B (2, 2)$$

$$d = \sqrt{(2 - 1)^2 + (2 - 1)^2}$$

$$d = \sqrt{1 + 1}$$

$$d = \sqrt{2}$$

Classification Problem:



K = 5

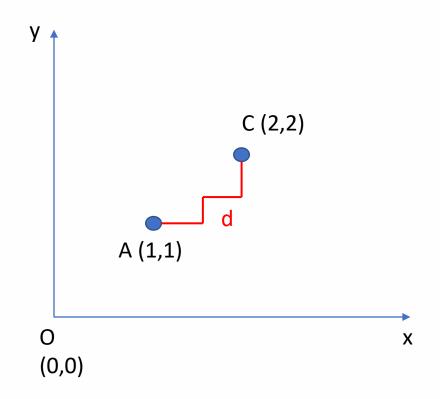
- Didn't repay on time
- May not repay the loan on time

Repaid on time

To Measure the distance between the data points:

- Euclidean Distance
- Manhattan Distance

Manhattan Distance



Manhattan Distance formula:

$$d = |x_1 - x_2| + |y_1 - y_2|$$

$$(x_1, y_1) = A (1, 1)$$

$$(x_2, y_2) = B (2, 2)$$

$$d = |1 - 2| + |1 - 2|$$

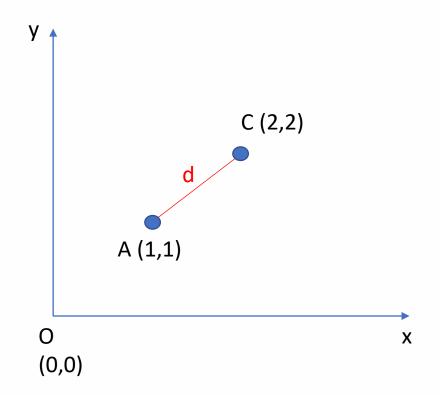
$$d = 1 + 1$$

$$d = 2$$

Manhattan distance is preferred over Euclidean distance when there is high dimensionality in the data.

Calculating Euclidean & Manhattan Distance in Python

Euclidean Distance



Euclidean Distance formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$(x_1, y_1) = A (1, 1)$$

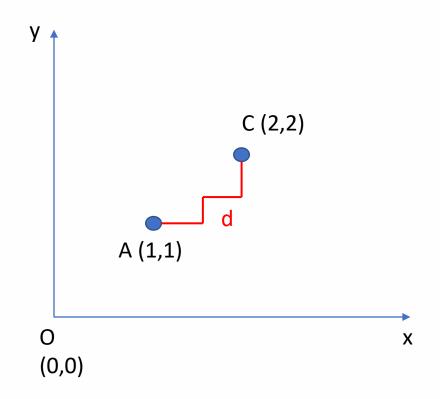
$$(x_2, y_2) = B (2, 2)$$

$$d = \sqrt{(2 - 1)^2 + (2 - 1)^2}$$

$$d = \sqrt{1 + 1}$$

$$d = \sqrt{2}$$

Manhattan Distance



Manhattan Distance formula:

$$d = |x_1 - x_2| + |y_1 - y_2|$$

$$(x_1, y_1) = A (1, 1)$$

$$(x_2, y_2) = B (2, 2)$$

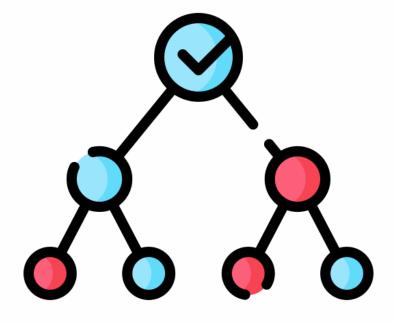
$$d = |1 - 2| + |1 - 2|$$

$$d = 1 + 1$$

$$d = 2$$

Manhattan distance is preferred over Euclidean distance when there is high dimensionality in the data.

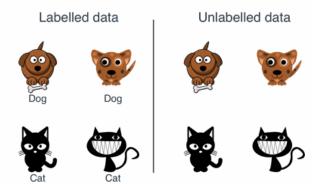
Decision Tree - intuition

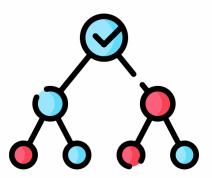


Decision Tree

About Decision Tree model:

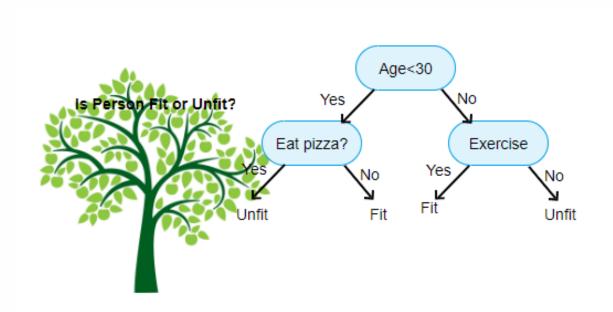
- 1. Supervised Learning Model
- 2. Used for both Classification & Regression
- 3. Builds Decision Nodes at each step
- 4. Basis of Tree-based models



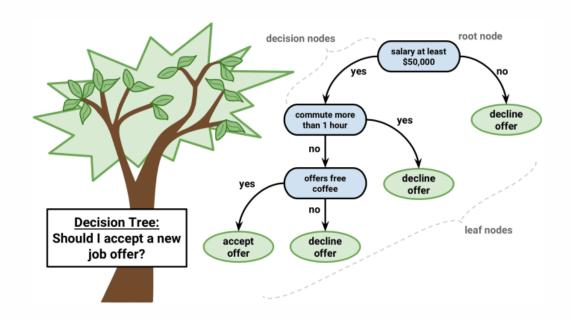


Decision Tree

Decision Tree – examples:



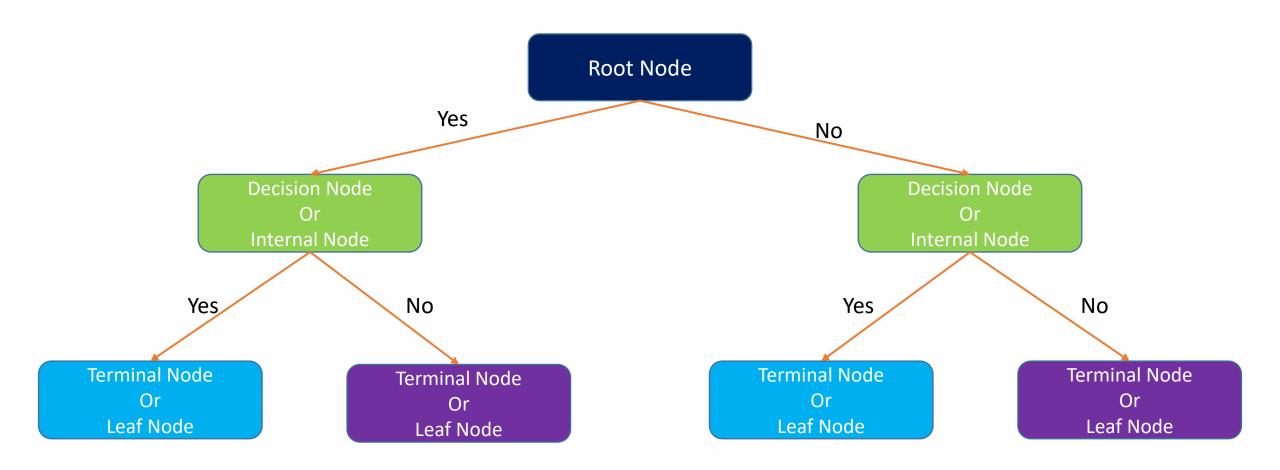
Picture credits: Al Time Journal



Picture credits:

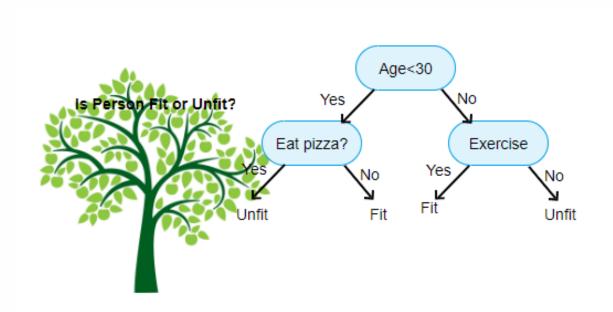
https://towardsdatascience.com/decision-tree-hugging-b8851f853486

Decision Tree - Terminologies

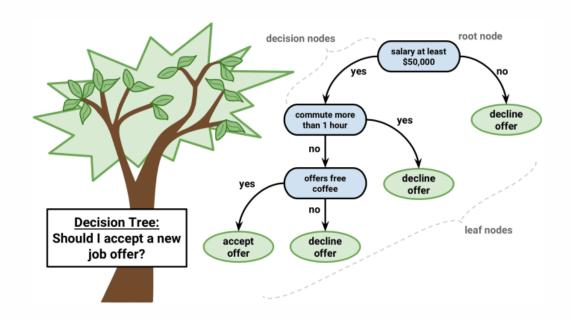


Decision Tree

Decision Tree – examples:



Picture credits: Al Time Journal



Picture credits:

https://towardsdatascience.com/decision-tree-hugging-b8851f853486

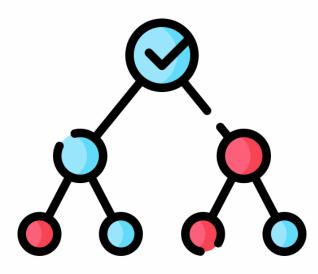
Decision Tree

Advantages:

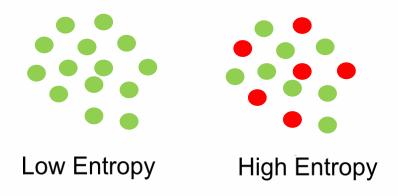
- 1. Can be used for both Classification & Regression
- 2. Easy to interpret
- 3. No need for normalization or scaling
- 4. Not sensitive to outliers

Disadvantages:

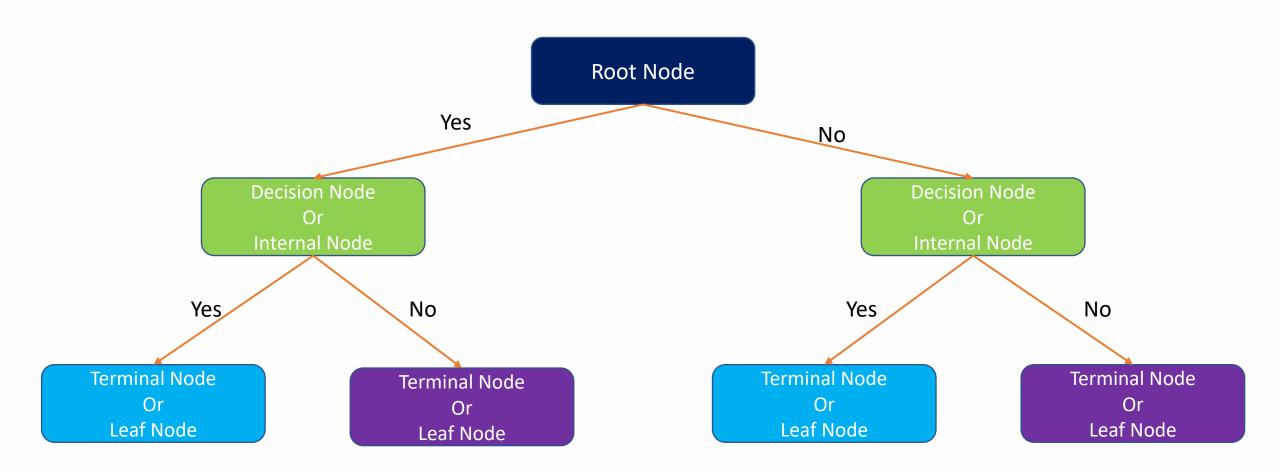
- 1. Overfitting issue
- Small changes in the data alter the tree structure causing instability
- 3. Training time is relatively higher



Entropy, Information Gain & Gini Impurity



Decision Tree - Terminologies

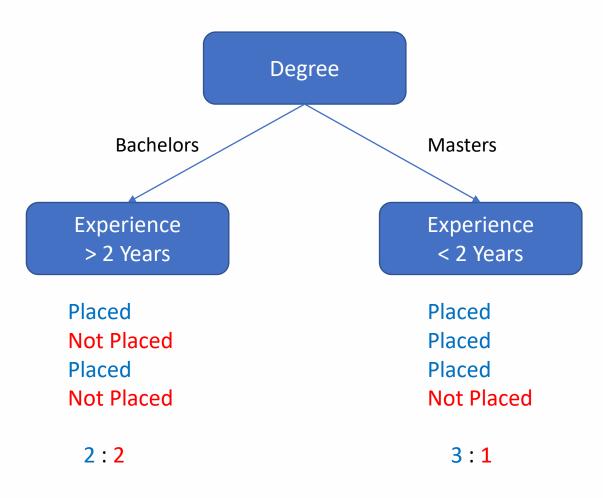


Decision Tree

Problem Statement: Build a Decision Tree to determine whether a person will **get a Job** or **not** based on their **Degree** & **Years of Experience**.

Degree	Experience in Years	Placed / Not Placed
Masters	2	Placed
Bachelors	0	Not Placed
Masters	3	Placed
Masters	1	Not Placed
Bachelors	2	Placed
Masters	3	Placed
Bachelors	0	Not Placed
Bachelors	1	Not Placed

Decision Tree



Experience > 2 Years Yes No Masters Bacheors Placed Not Placed Placed Not Placed Placed Placed Placed Not Placed 4:0 1:3

Entropy: High

Information Gain: Low

Gini Impurity: High

Entropy: Low

Information Gain: High

Gini Impurity: Low

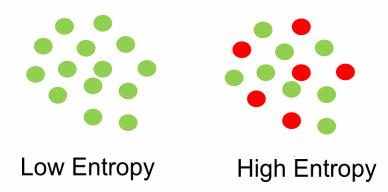
Entropy

Entropy:

In Machine Learning, **Entropy** is the quantitative measure of the **randomness** of the information being processed.

A **high value of Entropy** means that the **randomness** in the system is **high** and thus making accurate predictions is tough.

A **low value of Entropy** means that the **randomness** in the system is **low** and thus making accurate predictions is easier.



Entropy
$$= \sum_{i=1}^{c} -p_i \log_2 p_i$$

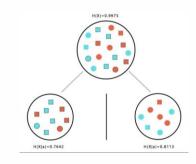
c --> number of classes

p_i --> Probability of ith class

Information Gain

Information Gain is the measure of how much information a feature provides about a class. Low entropy leads to increased Information Gain and high entropy leads to low Information Gain.

Information gain computes the difference between **entropy before split** and average entropy **after split** of the dataset based on a given feature.

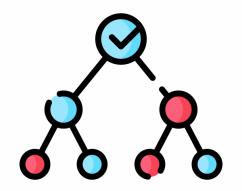


Information gain (T, F) = Entropy (T)
$$-\sum_{v \in F} \frac{|T_v|}{T}$$
. Entropy (T)

Gini Impurity

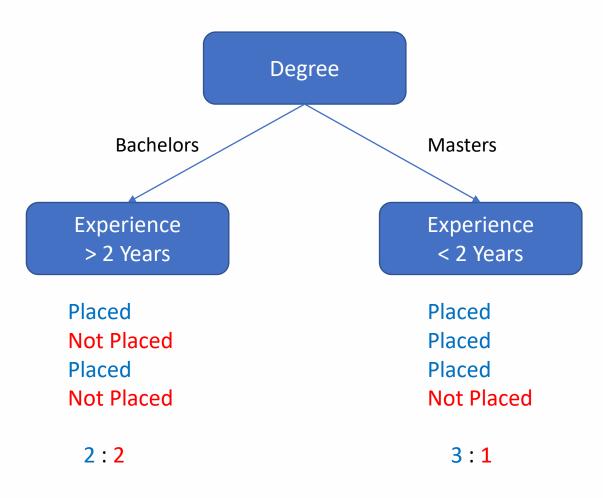
The split made in a Decision Tree is said to be pure if all the data points are accurately separated into different classes.

Gini Impurity measures the likelihood that a randomly selected data point would be incorrectly classified by a specific node.



$$G = \sum_{i=1}^C p(i)*(1-p(i))$$

Decision Tree



Experience > 2 Years Yes No Masters Bacheors Placed Not Placed Placed Not Placed Placed Placed Placed Not Placed 4:0 1:3

Entropy: High

Information Gain: Low

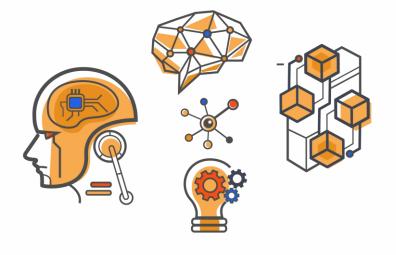
Gini Impurity: High

Entropy: Low

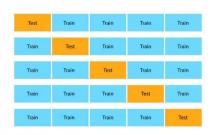
Information Gain: High

Gini Impurity: Low

Cross Validation, Hyperparameter Tuning, & Evaluation metrics

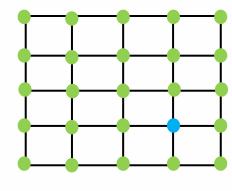


Module 8 - Outline

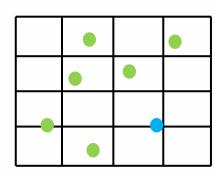


Cross Validation

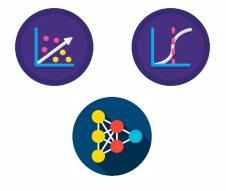
Hyperparameter Tuning



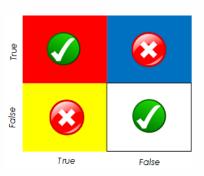
GridSearchCV



RandomizedSearchCV

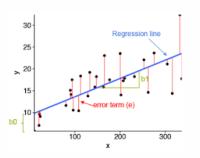


Model Selection

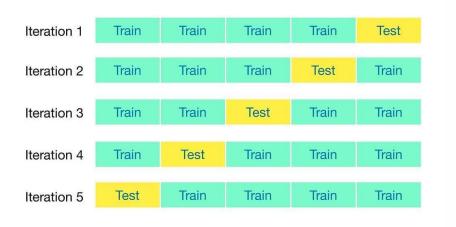


Accuracy & Confusion Matrix

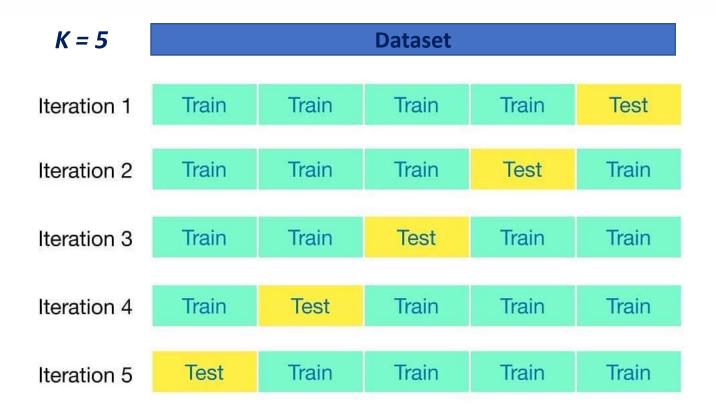
Precision, Recall, F1 Score

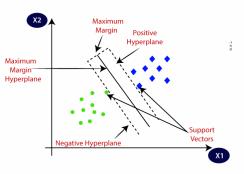


Metrics for Regression

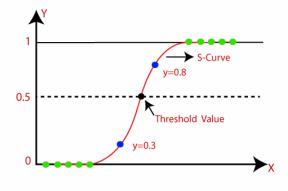


In K-Fold Cross Validation, we split the dataset into "K" number of **folds** (subsets). One chunk of data is used as test data for evaluation & the remaining part of the data is used for training the model. Each time, a different chunk will be used as the test data.

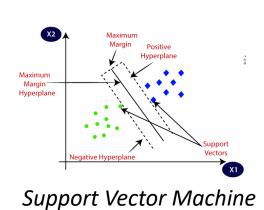




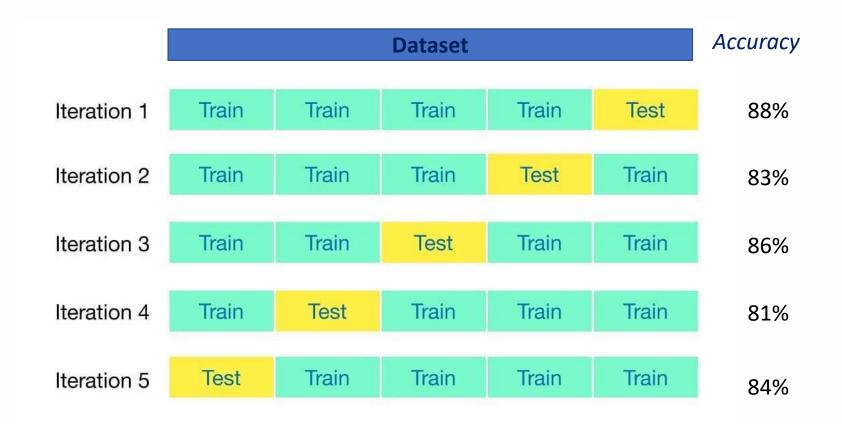
Support Vector Machine



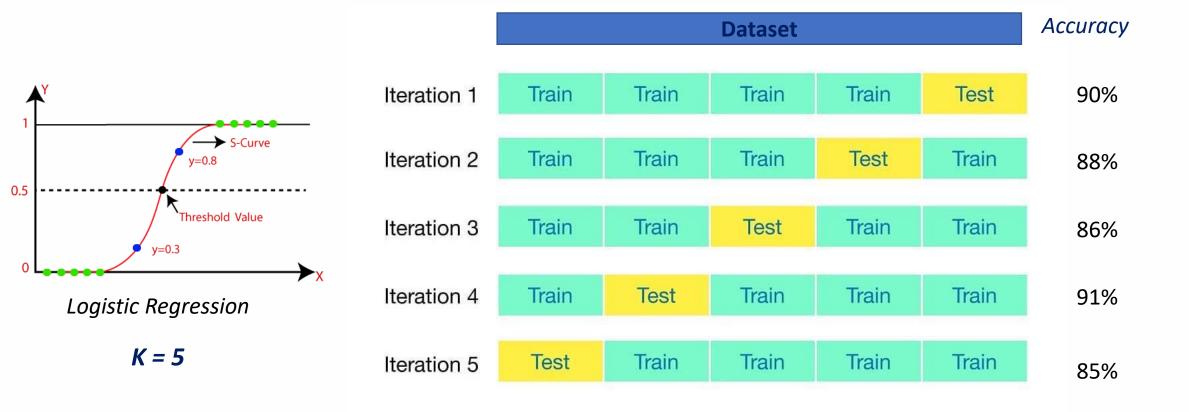
Logistic Regression



K = 5



Mean Accuracy =
$$\frac{88 + 83 + 86 + 81 + 84}{5}$$
 = 84.4 %



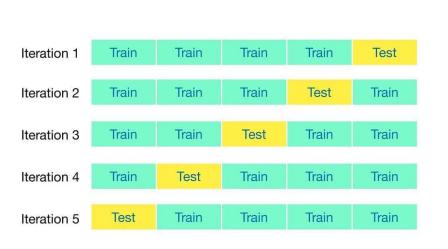
Mean Accuracy =
$$\frac{90 + 88 + 86 + 91 + 85}{5}$$
 = 88 %

✓ Accuracy score for SVM = 84.4 %

✓ Accuracy score for Logistic Regression = 88 %

Advantages of using K-Fold Cross-validation:

- > Better alternative for train-test split when the dataset is small
- > Better for multiclass classification problems
- More reliable
- Useful for Model Selection



Hyperparameter Tuning:

- GridSearchCV
- RandomizedSearchCV

Types of Parameters

Parameters

Model Parameters

These are the parameters of the model that can be determined by training with training data. These can be considered as internal Parameters.

- Weights
- **Bias**

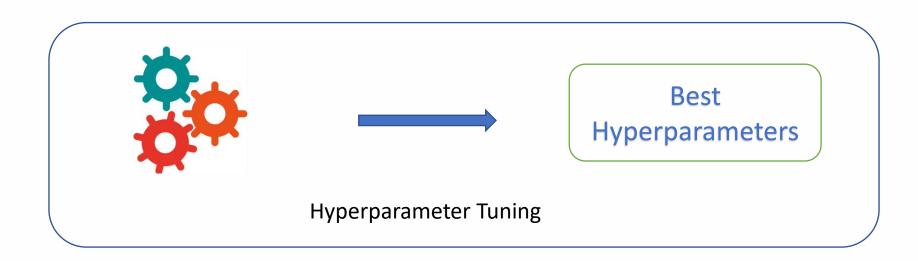
$$Y = w*X + b$$

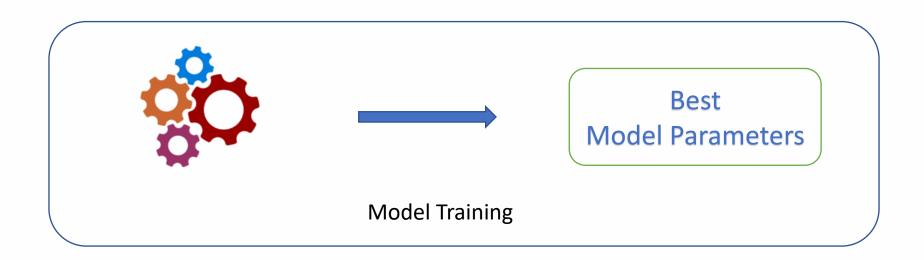
Hyperparameters

Hyperparameters are parameters whose values control the learning process. These are adjustable parameters used to obtain an optimal model. External Parameters.

- > Learning rate
- > Number of Epochs
- n_estimators

Hyperparameter Tuning

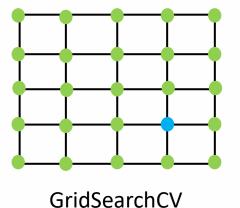


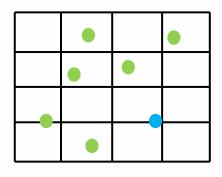


Hyperparameter Tuning

Hyperparameter Tuning refers to the process of choosing the optimum set of hyperparameters for a Machine Learning model. This process is also called **Hyperparameter Optimization**.

Hyperparameter Tuning Types:





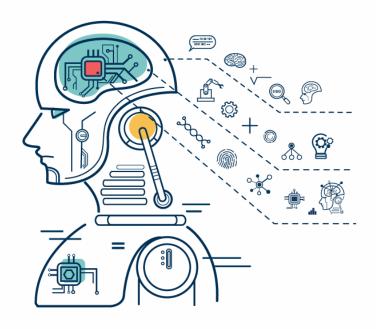
RandomizedSeaechCV

Support Vector Classifier:

C: [1,5,10]

kernel: ('linear', 'poly', 'rbf', 'sigmoid')

Model Selection in Machine Learning

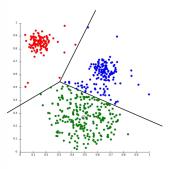


Model Selection

Model Selection in Machine Learning is the process of choosing the best suited model for a particular problem. Selecting a model depends on various factors such as the dataset, task, nature of the model, etc.

Two factors to be considered:

- 1. Logical Reason to select a model
- 2. Comparing the performance of the models



Model Selection

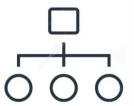
Models can be selected based on:

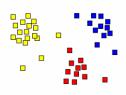
1. Type of Data available:

- a. Images & Videos CNN
- b. Text data or Speech data RNN
- c. Numerical data SVM, Logistic Regression, Decision trees, etc.

2. Based on the task we need to carry out:

- a. Classification tasks SVM, Logistic Regression, Decision trees, etc.
- b. Regression tasks Linear regression, Random Forest, Polynomial regression, etc.
- c. Clustering tasks K-Means Clustering, Hierarchical Clustering





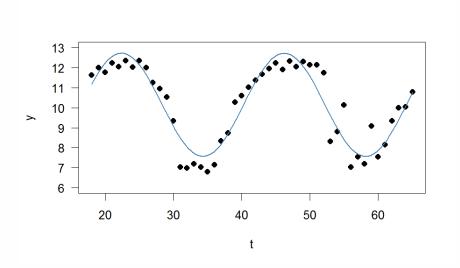
Linear Regression

Advantages:

- 1. Very simple to implement
- 2. Performs well on data with linear relationship

Disadvantages:

- 1. Not suitable for data having non-linear relationship
- 2. Underfitting issue
- 3. Sensitive to Outliers



Logistic Regression

Advantages:

- 1. Easy to implement
- 2. Performs well on data with linear relationship
- 3. Less prone to over-fitting for low dimensional dataset

Disadvantages:

- 1. High dimensional dataset causes over-fitting
- 2. Difficult to capture complex relationships in a dataset
- 3. Sensitive to Outliers
- 4. Needs a larger dataset

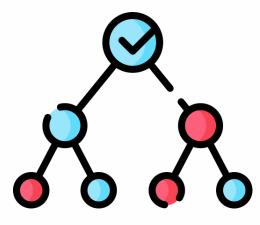
Decision Tree

Advantages:

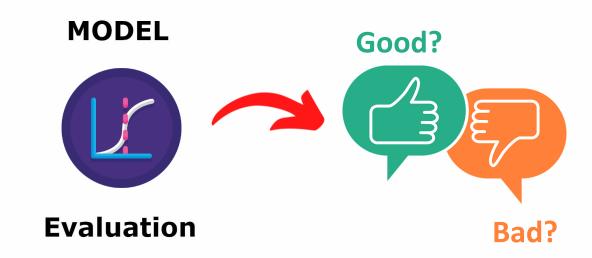
- 1. Can be used for both Classification & Regression
- 2. Easy to interpret
- 3. No need for normalization or scaling
- 4. Not sensitive to outliers

Disadvantages:

- 1. Overfitting issue
- Small changes in the data alter the tree structure causing instability
- 3. Training time is relatively higher



Precision, Recall, & F1 Score



Accuracy Score

In Classification, Accuracy Score is the ratio of number of correct predictions to the total number of input data points.

Number of correct predictions = 128

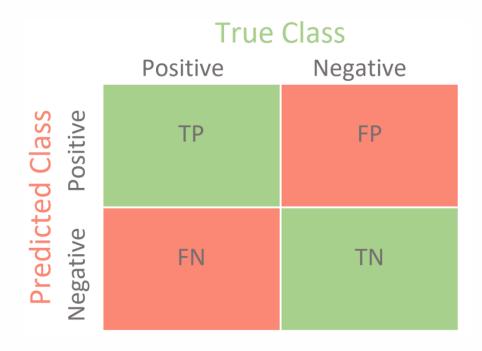
Accuracy Score = 85.3 %

Total Number of data points = 150

from sklearn.metrics import accuracy_score

Confusion Matrix

Confusion Matrix is a matrix used for evaluating the performance of a Classification Model. It gives more information than the accuracy score.

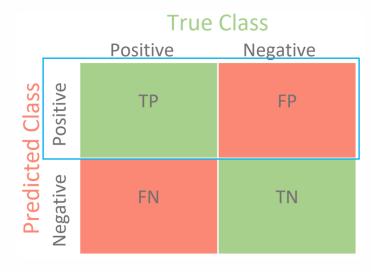


TP + TN = Correct Predictions

FP + FN = Wrong Predictions

sklearn.metrics.confusion_matrix

Precision



Precision is the ratio of number of **True Positive** to the **total number of Predicted Positive**. It measures, out of the total predicted positive, how many are actually positive.

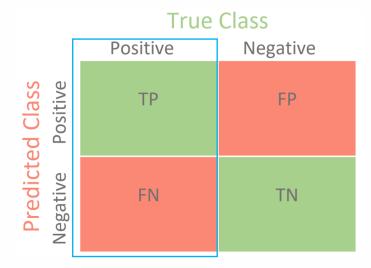
Precision

		True Class		
		Positive	Negative	
Predicted Class	Positive	TP	FP	
	Negative	FN	TN	

Precision is the ratio of number of **True Positive** to the **total number of Predicted Positive**. It measures, out of the total predicted positive, how many are actually positive.

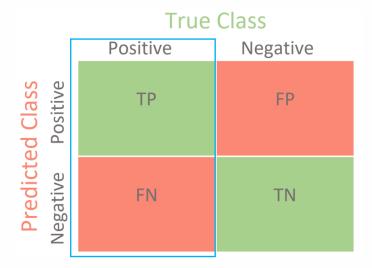
Precision measures the error caused by **False Positives**. Hence it is a good evaluation metric when **False Positive** predictions are critical.

Example: Face Authentication



Recall is the ratio of number of **True Positive** to the **total number of Actual Positive**. It measures, out of the total actual positive, how many are predicted as True Positive.

Recall



Recall is the ratio of number of **True Positive** to the **total number of Actual Positive**. It measures, out of the total actual positive, how many are predicted as True Positive.

Recall measures the error caused by **False Negatives**. Hence it is a good evaluation metric when **False Negative** predictions are critical.

Example: Cancer Diagnosis

F1 Score

F1 Score is an important evaluation metric for binary classification that combines Precision & Recall. F1 Score is the **harmonic mean** of Precision & Recall.

This is a very useful metric when a dataset has imbalanced classes.

F1 Score =
$$2 \times \frac{\text{Precision } \times \text{Recall}}{\text{Precision } + \text{Recall}}$$

Precision, Recall & F1 Score

Example:

Predicted

	Positive	Negative
Positive	TP = 50	FN = 10
Negative	FP = 5	TN = 20

Precision = 0.91

Recall = 0.83

F1 Score = 2 x
$$\frac{\text{Precision x Recall}}{\text{Precision + Recall}} = 2 x \frac{0.91 \times 0.83}{0.91 + 0.83}$$
 F1 Score = 0.87